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Let f € C[—1, 1] change its convexity finitely many times, in the interval. We are
interested in estimating the degree of approximation of f by polynomials which are
coconvex with it, namely, polynomials that change their convexity exactly at the
points where f does. We discuss some Jackson-type estimates where the constants
involved depend on the location of the points of change of convexity. We also show
that in some cases the constants may be taken independent of the points of change of
convexity, but that in other cases this dependence is essential. But mostly we obtain
such estimates for functions f that themselves are continuous piecewise polynomials
on the Chebyshev partition, which form a single polynomial in a small neighborhood
of each point of change of convexity. These estimates involve the & modulus of
smoothness of the piecewise polynomials when they themselves are of degree
k — 1. © 2002 Elsevier Science (USA)
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1. INTRODUCTION

Let f € C[—1, 1] change its convexity finitely many times, say s >0 times,
in the interval. We are interested in estimating the degree of approximation
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of f by polynomials which are coconvex with it, namely, polynomials that
change their convexity exactly at the points where f does.

In a recent survey [9] we have collected all known positive and negative
results on monotone and comonotone approximation on a finite interval, by
algebraic polynomials in the uniform norm (see also [8]). We have
established complete truth tables for the validity of Jackson-type estimates,
involving the ordinary kth moduli of smoothness of the rth derivative of a
given monotone or piecewise monotone function, as well as estimates
involving the Ditzian-Totik moduli of smoothness. The two main
ingredients in the proofs of all positive results in these truth tables were
first the approximation of an arbitrary such function by piecewise
polynomials with the same changes of monotonicity, and then the
approximation of such a piecewise monotone piecewise polynomial, by
polynomials with the same changes of monotonicity. See [10] for details.

Our intention in our research program is to construct the corresponding
truth table for convex and coconvex polynomial approximation. The main
thrust in this paper is to obtain Jackson-type estimates for the approxima-
tion of a continuous piecewise polynomial which changes convexity finitely
many times in the interval, by algebraic polynomials that change convexity
at exactly the same points. The main result is Theorem 3 stated below, which
is the analogue of [10, Proposition 3]. Our strategy for the future is to
approximate an arbitrary continuous function that changes convexity
finitely many times in the interval, by an appropriate coconvex piecewise
polynomial which in turn, by virtue of Theorem 3, will be approximated by
a coconvex polynomial. In order to illustrate the intricacies, we begin in
Section 3 with some negative results for the coconvex polynomial
approximation of more general piecewise convex functions (see Theorem
1). Also as a byproduct of Theorem 4, we obtain one significant positive
result for coconvex polynomial approximation (Theorem 2). So the outlay
of the paper is the following. We state the main results in Section 2. Section
3 contains the construction of the negative results. Section 4 contains
auxiliary lemmas. Section 5 is devoted to the proof of Theorem 4 which is a
preliminary step and a special case of Theorem 3, and as a byproduct, its
proof yields a proof of Theorem 2. We need some more preparation and
lemmas in Sections 6 and 7, and in Section 8 we prove Theorem 5 and with it
conclude the proof of Theorem 3. Many of the methods we apply are
modifications of similar ones in the papers by DeVore, Dzyubenko,
Gilewicz, Kopotun, Mania, Yu and the authors (see the References).
Nevertheless, for the sake of completeness, proofs are given.

In the sequel we will have positive constants ¢ that depend only on s and
k, and we will have positive constants C, which may also depend on b € N.
We will use the notation ¢ and C for such constants which are of no
significance to us and may differ on different occurrences, even in the same
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line. However, we will have constants with indices ¢y, ¢, . . ., ¢s and Cy, when
we have a reason to keep track of them in the computations that we have to
carry out in the proofs.

2. THE MAIN RESULTS

Let 7 :=[-1,1] and denote by C and C', respectively, the space of
continuous functions, and that of r-times continuously differentiable
functions on 7, equipped with the uniform norm

11 = max |/

Given f e C, and ke N, let

k : k—i k k .
M@= (-1 i f<x2h+zh>
i=0

be the symmetric difference of order &, defined for all x and ~>0, such that
xthhel
The Ditzian—Totik (DT-)moduli of smoothness [3] are defined by

of(f,) = sup sup |45, f(), 120,

0<h<t

where ¢(x) = /1 — x2, and the inner supremum is taken over all x such that
x + ’j‘h(p(x) € I. We also deal with the ordinary moduli of smoothness which
are given by the above with ¢(x) = 1 replacing the above ¢, namely,

wp(f,0) = sup sup |45/ (), =0,

0<h<t x

where the inner supremum is taken over all x such that x + %‘h el.
Denote by Y, s €N, the set of all collections ¥, = {y;}_,, such that
—l<y,<--- <y <l,and for s = 0, we write Y, := {0}. For later reference
set 1o := 1 and y, = —1. Finally, let 4%(¥;) denote the collection of all
functions f € C that change convexity at the set Y, and are convex in [y, 1].
Given ne N, n> 1, we set x; = x;, = cos(jn/n), j =0,...,n, the Cheby-
shev partition of [-1, 1], and we denote [; .= I;, == [x;,x;—1], j = 1,...,n. Let
i be the collection of all continuous piecewise polynomials of degree
k — 1, on the Chebyshev partition and let Z,lm C Xy be the subset of all
continuously differentiable such functions. That is, if S € X, then

Sl = pj, j=1...,n,
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where p; € Il;_;, the collection of polynomials of degree <k — 1, and

pi(x)) = pjr1(x)), j=1...,n—1,
and if S € X}, then in addition,

P = P, j=1...n—1.
Given Y; € Y, let

O; = 0;,(Yy) = (xj11,%j-2), ift y; e [x;,x;-1),

where x,.1 = —1, x_; .= 1, and denote

0=0nY,) = O 0,, O(n,0) = 0.

i=1

Finally, we write je H = H(n, Y;), if [; n O = 0.
Denote by Z;,(Y) =k, and E,(%) <X, the subsets of those
piecewise polynomials for which

Dj = Dj+l» whenever both j,(j+ 1) H.

We wish to approximate a general function f e 4%(Y;) by means of
polynomials which are coconvex with £, that is, which belong to 4%(Y;). We
denote by

EQ(f,Y) = inf 7= il

puell, A7 (Y,

where I, is the set of polynomials of degree not exceeding n.
In a recent paper [7] with Kopotun, we proved that if a function
f € C[—1,1] changes convexity at Y, then

EO(f, ) <co! <f, 3) <cos (f, 1), nEN, @.1)
n n

where ¢ = ¢(s) is a constant which depends only on s, and N = N(Y;) is a
constant which depends on the location of the points ¥;. On the other hand,
Wu and Zhou [14] proved that for k>4, estimate (2.1) cannot be had with
w3 replaced by wy, and Pleshakov and Shatalina [11] have just proved that
(2.1) is not valid with N = N(s) replacing N = N(Yy).

In this paper we will prove that if s > 1, then even

EQ(f,Y)<co ( £, %) n=N, (2.2)
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is not valid with N = N(s) replacing N = N(Y;). In fact we prove more,
namely,

THEOREM 1. For no k=1, r=0,1,2,3 and s=2, is it possible to have
constants ¢ = c(k,r,s) and N = N(k,r,s), depending only on k, r and s, such
that the inequality

ED( )< oy (f“%%) (2.3)

holds for all n=N and for all € C" n A*(Yy).

On the other hand, we show that if s = 1, then (2.2) is valid for N = 1; in
fact we prove

THEOREM 2. Let f € C n A*(Y)), that is, changes convexity once on
[—1,1]. Then

ED(f,Y)<cof <f,l), n=l. 2.4)
n

As mentioned above, in view of [11], (2.4) is the best that one can expect.
However, our main positive result is

THEOREM 3. For every k,n € N and s € Ny there are constants ¢ = c(k,s)
and ¢y = cy(k, s), such that if S € Xy ,(Y;) N A*(Y,), then there is a polynomial
P, € AX(Y,) of degree <cqn, satisfying

1
IS — Poll<co (s, ;) (2.5)

Theorem 3 is trivial for k = 1, since Z; , < ITj. On the other hand it is new
for k=4 even for convex approximation, namely, the case s = 0. As was
proved by Shvedov [13], (2.5) cannot be had for a general convex function f
(that is s = 0), with £ >4. The prooffor £>2 is divided into two stages. First
we prove a special case of Theorem 3, which in particular proves it for the
case k = 2, namely,

THEOREM 4. For every k,ne N and s e Ny, if S e Z; (¥) N A*(Y,), then
there exists a polynomial P, € A*(Yy), of degree not exceeding cn, such that

1
IS — Pll<cof (s, —). 2.6)
n
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Then we note that by virtue of Lemma 1, in order to conclude the proof of
Theorem 3, it suffices to prove

THEOREM 5. For every k,n e N and s € Ny there are constants ¢ and cy.,
such that if S e 2}{’”()@) N AX(Y,), then there is a polynomial P, N A*(Y;) of
degree <cyn, satisfying (2.5).

Note that by the above, we have to prove Theorem 5 only for £ >3, but
the cases £ = 1,2 are anyway trivial in this setting since Zin c II;.

_LemmA 1. Let k=3. Then for each SeZk,,,(Ys)r\Az(Ys), there is an
S e %, (Y) 0 AX(Y,), such that

~ 1
||S—S||<cw,(f<S,—). 2.7
n

In particular

Proof. For each 2<;<n, set

lxj,l —Xj_2 p},l(xj—l) B pjl‘(xj—l)

a(x) = (x — x;)%, if j,(j—1)eH,
2 Xji—1 —Xj Xj—Xj-2
1 Py (xjm1) — pilxj-1) . .
) =3 @)l ifjeH, (- D¢H,
and

aj(x) =0, if j¢ H.

Also for each 1<j<n — 1, set

1)61' — Xjt1 Pj(x]) - p}Jrl(xj)

bj(x) = x—x;1)%  if G+ 1)eH,
2xj—xj,1 Xjrl — Xj—1
1 '(x:) — b (O
bi(x) = EM@_XF]){ if jeH, (j+1)¢H,
Xji—1 — Xj
and

bix) =0, if j¢H.

Finally, set a;(x) := 0 and &,(x) := 0. Then,
S() = pj(x) + a;(x) + bi(x) +J(x),  xel,
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is the required function, where J is a piecewise constant function with jumps
in at most 2s points x; near the y;’s; explicitly, the jumps at these x;’s are

APJ) = Pl Iy —x00) if jEH, (j+ 1) eH,

J(xj+) = J(xj—) =
() = J6y~) {;[p;-(x,-)—p;+,<x,~)](x,~—x,~1) if jeH, G+ 1)¢H.

Indeed, straightforward computations show that S e Z}m(YS) N A*(Y,), and
by Markov’s inequality

2

2k
1) = P Gl S ————lp; — pjsilly-
' Xj-1 = X;

Thus (2.7) readily follows by the inequality

1
2 — pivill, <co (Sn)

which is an immediate consequence of [10, Lemma 9] (see more details at the
beginning of Section 6). 1

3. NEGATIVE RESULTS

Given 0<b<1, set

402 p2\2
glx) = b~*(x= — b?)", |x|<b,
0, elsewhere,

and let

gn(x) = /0 (x — u)g; (u) du.

Then clearly g;, € C°, and it is readily seen that

ol =8B =
PI=15" 6537 Bl =15
8
lgpll =1, and  |lg]l = —=b"'<2b7". (3.1)

33

LEMMA 2. Given n=1, for each polynomial p, of degree <n, and
satisfying

-0, xe {—1 1},
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with b = In~3, we have

lgs — pull > o
gb DPn 40
Proof. First we observe that p/(+b) =0, and that Pi(x)<0, for —b<x
<b. Assume that for some —b<xg<b, p(xg)< — 3 Then
1
e} b, bl = a0

(b —x0)(b+x0)  4b%
Since

1
[pf/1l9 _bs X0, b] = E p}(14)(6)7

for some —b<0<b(<%), it follows by Bernstein’s inequality that

ot S L@
1= 5 1A O1> 3
Now by (3.1) and the prescribed value of b,
2b  4b
— pallZlpall = > = 3.2
lgo = pall=1pall = llgl > 75— 5 = 5 (3.2)

If on the other hand, p)/(x)> — %, for all —b<x<b, then we represent p, in
the form

pi) = PO 43240+ [l
Since p)/(x)>0 for b<|x|<3, it follows that
1 1
Dn <_§> - 2pn(0) + DPn (E)
1 _
= Az (% — u) pn(u) du + / (—% — u) pZ(LI) du
b b b
2/0 <§—u>p;’(u)du+/o ( ) !(— u)du>—Z

b
gb <%> —295(0) + g» <%) = 2/ G - u> g" () du

813_’_132
15 3

=

l\)l'—‘

Similarly,
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Therefore,

or =~ o> (a(~3) = v(~3) ) - 200 - 00
+

(n()-=())

b 8 Kb
~ 415 3710

Thus together with (3.2), this concludes the proof of Lemma 2. 1

As an immediate consequence we get

COROLLARY 1. For every constant A > 1 there exists an N(A) sufficiently
large such that if n> N(A), then for any s=2, there is a function g = g, €
C3[—1,1], which changes convexity s times in [—1,1], and such that any
polynomial p, of degree <n which is coconvex with it, satisfies

Allg?||
lg — pull > —5—,

n
Allg"|l
||gfpn”> 2

n

and

Allg'll
llg — pull > .

n

Proof. Let N(4) = (804)° and let s>2. We take b = b,, n> N(4), as in
Lemma 2, and let g = g. The function g changes convexity at y, = —b and
y1 = b, it is convex in [y, 1], and if s > 2, then we take s — 2 arbitrary points
satisfying —l<y,< - <py3< — %, and regard g as changing convexity at
these points too, hence ¢ € A*(Y;). If the polynomial p, is coconvex with g,
then it satisfies the requirements of Lemma 2. Therefore, by Lemma 2 we
have

B||p? 3
b g lib”  Allg II’
40 80 n’

llg = pall >

b _lg"llb_ Allg"l
40 40 n?

llg — pall >

and
/ !
b _ 3nlgll_ Allg'll

40 64n n o '

llg — pall >
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Remark. It should be noted that the function g, above is independent
of 4.

We are ready to prove Theorem 1.

Proof of Theorem 1. The proof readily follows from the observation that
forall k=1,

wr(f,0) <2 o(f, 0 <211,
which by Corollary 1 does not allow the case » = 0 in (2.3) and

(/0 <211,

which takes care of the other cases. 1

4. SOME AUXILIARY LEMMAS

We begin with two lemmas of independent interest which are needed only
in the proof of Theorem 4. We need the notation [ f;z;, z3, z3] for the second
divided difference of f € C at the points zj, z; and z3.

LemMMA 3. Let E :=[a,b] < [0,1] and set Xy =y, where y, is the
characteristic function of E. Then for every x, € (0, 1), we have

(b—a)

<[XE;0,x0,1]<b — a.

Proof. Recall that if a function f e C'[0, 1] has an absolutely continuous
first derivative, then its second divided difference possesses the well-known
representation

1 X
Lf30,5x0, 1] = /0 /0 £ — (1 = x0)y) dy dx.
Hence,
A = e 0,0, 1] //m—(l—xm)dydx

and we observe that, putting A := (1 —x) ', 4 is the area of the set

A={(xp): a<x—2"'y<b} n{(x,y): 0<y<x<I1}.
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Note that 4 is readily seen to be the intersection of the right-angle triangle
bounded by the x-axis and the lines y = x and x = 1, with the parallelogram
in the first quadrant, the basis of which is [, b], the height 1, and the sides of
which are the lines y=A(x —a) and y = A(x —b). The area of the
parallelogram is b — a, hence the upper estimate.

As for the lower bound, we observe that since A > 1, it follows that 4
contains the right-angle triangle which is bounded by the x-axis and the lines
x = b and y = x — a, the area of which is exactly %(b — a)*. The proof of the
lower estimate is therefore concluded. 1

COROLLARY 2. If E < [0,1] is a finite union of intervals, then
[XE;0,x0, 1] <meas E =: |E|.

The second result is

LemMmA 4. Let py be a polynomial of degree not exceeding k and let a<b.

If

—da
meas{x € [a,b]: p}(x)<0} < Tk

then for every xg € (a, b),
[px; a,xo, ] =0.

Proof. Without loss of generality, assume that a =0 and b=1.
If p/ =0, then there is nothing to prove, so we may assume that
12{ 10,17 = max{|p{(x)|: 0<x<1} = 1. Write

= {x € [0,1]: p/(x)<0},

so that E» is a finite union of intervals, and let x € E; be arbitrary. Then there
is an x, € E> such that [x — x»|<|E>| and p}/(x2) = 0. By Markov’s inequality,

1
1P| = 16— x2) O O) < |E2 1262 ooy < o

8k
so that
1
pl(x) > 5 xek,. 4.1
Since we have assumed that || p{|ljo,;; = 1, this implies that there exists x e

[0, 1] such that p}/(x;) = 1. We take an interval £, < [0, 1] of length |E|| = 4k2
which contains x;. Then for each x € E, it follows again by Markov’s
inequality that

1
PG = el = I = x0) O IE 2K Aoy = 5,
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which in turn implies that

1
Pz xeh. (4.2)
Combining (4.1) and (4.2) we get
1 1
P//{,(x)>§}f£] 7@)(525 XG[O, 1]

By virtue of Lemma 3 and its corollary we obtain
1 I 1

11 1
10,0, 11> 1B — — |Ea| >y — o s > 0.
[Px; 0,x0, 1] 22| 1l 8k| 2| 26k4 8k 16k3

Now denote

1 1 1 1
Pp(¥) ==+ = V1 =32 ==+ - px).
n* n n? n

Throughout the paper we will have x and n as the generic variables, so
whenever it will be clear that we deal with them, then we will write p for
p,(x). For each j=1,...,n, set h; = h;, = |[;| = x;—1 — x;, where we recall
that x; :==x,, == cosmj/n are the Chebyshev nodes. Then the following
inequalities are well known (see, e.g., [10]):

p<h;<5p, xel,

hip1 <3h,

pa()<dp(x =yl +p),  xyel

(k= Y+ p)/2<p =yl + p,(») <2 = y[ + p), x,yel. (4.3)

In particular,
(x —xj| + h))/10<|x — x| + p<2(Px — xj| + ),

xel, j=0,...,n 4.4)
The next two lemmas are needed in the proofs of both Theorems 4 and 5.
Lemma 5. If 0<j<i<J<n, then
—xy

1 .
S - )<
2 Xj — Xiy

< - (4.5)
1
Furthermore, if either J<3j or n — j<3(n —J), then

R ) (4.6)

i i+1
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Proof. Lett = 5.. We begin with the upper bound and first assume that
2i+1<J + . Then

x;—x;  sin(J + jsin(J — j)t

Xi—Xip1  sin(2i + 1)¢sint
J+j
< J—7
i1V 7
J+]j
< J — J -
2+1( N<U =),

where we have used the fact that sinu/u is decreasing for O<u<m.
If on the other hand 2i+1>J 4/, then we observe that x; —x; =
Xn—g — Xp—j and X; — Xjp1 = Xp—j1 — Xp—j, and 2m—i—-1)+1<(m—J)+
(n — j). Thus we obtain the same bound This proves the upper bound
in (4.5). Further, if J <3, then clearly 57T <2 so that the upper bound in
(4.6) follows. Similar considerations yleld the upper bound in (4.6) when
n—j<3(n-J).
As for the lower bound, we first assume that J <%. Then

Xj—XJ > Xj—XJ

=
Xi —Xiy1  Xj-1 — XJ

_sin 2Jt + sin 2t tan(J — j)t
~ 2sin(2J — 1)t sint

E(J J)-

If j>=%, then we have the symmetric situation and the proof is the same.
We are left with the case j<j<J. To this end we observe that if n

is even, then xp — xn, | = xn_; — xn>x; — x;1, j<i<J. Hence by the above
. .. 2 2 2
inequalities
X=X (xj _xg) + (x% _x")
Xi — Xit1 Xi — Xit1
Xj — Xn Xn — XJ
> 2 4 2
X — X Xn — Xn
255+ (7-5) =9
“2\27/ 2)) =27
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If on the other hand n is odd, then the biggest denominator is
Xp—1 — Xp11. Observe that x;, = x2;2, so that by the inequality for the even

p) 2
case we have

Xi— X Xi— X
J J > J J

=
Xi = Xi+1  Xp—1 — Xp+1
2 2
_ X2j2m — X2J2n

N Xn—12n — Xn+1.2n
-1
o ((xn],Zn - xn,2n) + (xn,2n - xn+1,2n))

X2j.2n — X2J,2n

> 2 + 2 71—1(.]—') 1
“\o—2j 2—2;) “2° 7

Given Y;, s > 0, set

H(x) = ﬁ(x —y) and d(x) :=sgn II(x), xel.
i=1

Let

=il
n(x) = | | P rE—
i=1 |x - yl| + P

then it follows immediately from (4.3) that
n(x)>27%, xe(=1,1\0.
Now, by virtue of (4.4)
e = il + p <2 = x;| + b; — yil + 2y,

and if j € H, then 3|x; — y;|>h;. Hence
d <
(b = x|+ hpbe; — vl "=yl +p

JjeH,

which in turn implies

hj )S [T1(x)| ' .
: <7Prn(x), xel, eH.
(Ixx_;l Ty S J

Similarly,

(Ix — X+ p>s ()|
p [11(x;)|

=7n(x), xel, j=0,...,n.

(4.7)

(4.8)

(4.9)

(4.10)

4.11)
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Following [12], let

cos? 2narccosx  sin’ 2n arccos x
02 + -2
(x —x;) (x —Xx;)

where X; = cos(j — H)n/n and xj = cos /30 with ﬁo (—Pn/n, j<n/2, and
ﬁ =(j—3n/n, j>n/2. Note that X and x% are zeros of the respective
numerators which are contained in /, (the interior of [;), and that the ¢; are
algebraic polynomials of degree 4n — 2. Recall that

C
tj(x)gm\ t(x) xel. (4.13)

1(x) = tja(x) = ) (4.12)

With j € H and an integer b > 6(s + 1), we associate the polynomial of degree
<Cn,

1 X
T = Tatwsh V) = / i) d. (4.14)
where
1
d; = /_ 1 £ (u) I (u) dlu.

It follows by [5, Lemma 5.3] that

Ch2<b7] <H(xj)<ch2b 1 (415)
J d;
which clearly yields
T () ()1 (x;) =0, xel. (4.16)
Denoting
h
I = R
/&) b —x;| 4+ k)
we obtain by (4.13) and (4.15),
|} (x )I\—r%( ) ()| <C|T'(x)), xel. 4.17)
x|~

Also by [5, Lemma 5.3], if

Xj(x) = X(x,-,u(x)
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is the characteristic function of (x;, 1], then for j e H,
2,0 — | <Cr " '(x),  xel. (4.18)

Similarly, the polynomials of degree <Chn,

i} 1/~
W=7 / (=)0t = 00 TG0

so that Tj(l) = 1, satisfy
TOH@NIx)<0,  xelll,

and, in addition, they satisfy inequalities similar to (4.17) and (4.18),
namely,

[1(x)|
[1(xp)l

_ C
T ()< i () el

and .
l7,(x) — Tj(x)| < Clﬂfbfsfl(x), xel.

Then we obtain

LEMMA 6. Let b = 6(s + 1). Then for each j € H there exist polynomials
7; and T; of degree <cn, satisfying

T () () (x;) =0, xel,

T () (x) <0, xel\l, (4.19)
¢ [1(x)| "
|rj(x)|<h7rj.b(x)m<c|rj(x)|, xel, (4.20)

and
(= x)); — )| <ch T3 (x),

(= x)); — TE|<ch; I (x),  xel. 4.21)

Proof. We will prove only the existence of the polynomials 7;, the other
case being completely analogous. For every j € H let T; be defined by (4.14).
We use it to construct 7;. By virtue of (4.18)

1 1
/|}(j(x)—7}(x)|dx<c/ r;xdx< :cohj,  jeH.  (422)
—1 -1
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If for r:=1[6¢yl (where [al denotes the ceiling of a), both j—r>0 and
j+r<n,and if for all j — r<i<j+r, we have i € H, then by Lemma 5 we
have

Xj—r — Xj> 3C0hj,,~,1 ZC()hj,r and Xj— -xj+r>c0hj+r;

so that it follows from (4.22) that
1 1
[ @0 —gonar = [ @01y 00 de = 3y, =<,

and
1 1
1 (51,0 = 1,0 d = / (Te) = 251, i+ (5= 31,) 0,
Hence for some 0<a<1, we have
1 1
" / (Toes) — 70 dx + (1 — ) / (Tes() — 7)) dx = 0.
—1 -1

We set

Tin = Tj(x) =« /x T (u)du+ (1 — o) /X1 Ty r(u) du,

-1
so that
(1) =1—-x;,
which by (4.18) in turn implies (4.21). Now (4.19) follows from (4.16) and
(4.20) follows from (4.17) since by our assumption sgn I1(x;_,) = sgn I1(x;,,)
= sgn [1(x;).
If j — r<O0, then it suffices to take

7i(x) = /’1 Ti(u) du,

and if j 4 r > n, then it suffices to take
1
Ti(x) =1 —x; — / Ti(u) du.
X

We are left with the case where there is an i ¢ H, such that 0<j — r<i<j +
r<n. In this case we take the Chebyshev partition of order 2rn, so that we
have x; = x2,j2m and i € H(Y,, 2rn), for all 2rj — r<i<2rj+ r. Thus we set

Tj(x) = T2rj,2rn(x)s
and we observe that by the above construction this 7; satisfies (4.19)—(4.21),
since by virtue of (4.5),

2
h2rj,2rn < h] < 4]" h2rj,2rn . 1
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Remark. One should note that by going from n to 2rn, we may reduce all
cases save j = 0 and j = n, to the first situation.

The last four lemmas of this section are required in the proof of Theorem
5. Combining Lemma 6 with (4.3), (4.10) and (4.11) readily yields

LEMMA 7. The polynomials t; and T; satisfy

25(s+1)

ch; 0

|r}’(x>|>;n<x)(> . xel,
P )k —x;[+p

hA
G S%n(x), xel, (4.23)

and

h; 2
= x)), — 1, <ep (7f) ,

|xij|+p
h; :
I(x — x;) —f-(x)|<cp<—), xel (4.24)
R b — x|+ p

In order to prove Lemma 10 below, we need two more auxiliary results.

LEmMA 8. Let Iy, 11 € N, and assume that 0<jo<j1<--- <jo, <jo+
lo<n. Then

1 h\?
A > g x> (i) (e = Xjot1o)- (4.25)

v=1
Proof. With no loss of generality, we may assume that jo<n — jo — lo.
Then for each 1 <v</y,

Xjy = Xjpor, ZXj, = Xjly ZXjo = Xjotly -

Thus, in order to prove (4.25), it suffices to estimate
Xj, — Xjo41, _ Sinmly/2nsinn(2jo + 11)/2n
Xjy — Xjo+1 ~sin 7'1310/271 sin (2o + lo)/2n

- sin’ nll/2n> (11>2’

~sin?nlo/2n” \lo

where in both inequalities we use the fact that /;</y and in the last
inequality also that sinx/x is decreasing in (0,7). This completes the
proof. 1
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LEMMA 9. Let A = {jo,...,jo+ lo} and let A1,A> < A be such that #A4,
=20y and #4, = 1,. If 6; € {—1,1}, j € Aa, then there exist 21, constants a;,
i€ Ay, such that

1\ 2
jai| < (l—‘)) . ied, (4.26)
1
and
1 1
5 ; 0;(x —x;) + T ; ai(x —x;) = 0. (4.27)

Proof. Without loss of generality we may take [, = 1, that is, 45 = {J«},
and we may assume 6, = —1. We may write 4; as 4; = A] U 4], where
each set contains /; elements, and each index in 4| is less than all indices in
A7 . Denote

1 : + 1 . _
EZ(xfx,-):.xffx and EZ(xfxi):.xfoc,

ieAl+ iedy
and put

Xj, — o .
’j , iedf,
ot — o~

L
e ,  iedy.
o —oat

Then (4.27) for [, = 1 follows. By virtue of Lemma 8 we have

2
L
+ —
o - = (% (xjo _xj0+lo)’

whence (4.26) follows by the straightforward inequality |x;, — a®|<x;, —
Xj,+1,- This completes the proof of Lemma 9. 1

We are ready to state and prove Lemma 10.

LemMMmA 10. Let E be an interval which is the union of [=12s of the
intervals 1;, and let a set J C E be the union of 1 <u<1/4 of these intervals.
Then there exists a polynomial Q,(x) = Q,(x,E,J) of degree <cn, satisfying

o ) 25(s+1) @

max {p, dist(x, E)} 2 eJUU\E) (4.28)

Q:;(x)é(x»cli(
u

(we may take ¢y <1),

0 (x)d(x)= — %, xekE\J, (4.29)



COCONVEX APPROXIMATION 39

and

10,(x)|<clp Z M el (4.30)

=% (=1 +p)”
Proof. Let HE) ={jeH|[;cE}, HJ) ={jeH|I;cJ}, E(QO) = {j|
I, cEn O}, and Hy(E) = {j e HE); n O#0}, where O denotes the
closure of O. Finally, let j, := min{j € H(E)} and j* := max{j € H(E)}. Set

A> = H(J) U H(E) U {js, j*}  and 4y = H(E)\(4> U E(O)).

Denote by /f and /; the number of elements in 4; and 4», respectively, and
set [ = [17‘]. Then it readily follows that

L<p+2s+2<eu 4.31)

(recall that we allow ¢ to depend on s), and
1
l>lT>Zf(lz+3s)>gl. (4.32)

Denote by jo and j° = jo + / — 1 the smallest and the largest integers j, such
that /; ¢ E. We consider three cases.
Case 1. Let = jj. Set

/ d,7i(x)
0,0) == > L,
where 9, = sgn I1(x;). Then Q) (x)d(x)=>0, x € I, which implies (4.29), and
(4.28) readily follows from (4.23). Thus we only have to prove (4.30). To this
end, by (4.24) we obtain for any j € 4>,

7l

@C—x) . Pk (o — )
hj '

< +
h (kk — x| + p)* h

_| /( x) —(x xj)+|+

Now, if x<x;, then (x —x;), = 0. Otherwise, observe that x € /; for some
1<i<j<2l. Thus,

(x —x;) (x —x; + p)* <10 X —XjX—Xj+hjx—x;+ h;
hj ph hj hj ]’l,’

3
<10<¥+ 1) <clb
1

which implies (4.30).
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Case 1I: Let jo=n — 2/. Set

) 0
0,(x) =10 D 3 () = (= x)),

jed, "

and proceed in the same manner as in Case I.
Case 1II: Let [<jo<n—2l. Denote by h=|E| =xj,_1 —Xj+/—1, the
length of the interval E. Then (4.6) implies
1
Ehglhj<2h, I, c E. (4.33)

Lemma 9, (4.31) and (4.32) guarantee the existence of a;, i € A1, such that

/
=N S —x)+ > ailx—x) =0 (4.34)
M5t ied,
and
2
|a,~|<£(i) Z—zgc, i€eA,. (4.35)
u\l1) L

(Note that if 7§ is odd, then we apply Lemma 9 to 4;\{i*}, for some
arbitrary i*, and put ax = 0 in (4.34).)
For each i € 4| set

% . Tis if 5iai>05
T, otherwise,

and let
11
0,(x) = ¢ (— D05+ air;“m),
M Jjeds i€ed|

for some ¢ to be prescribed. Then by virtue of (4.33) and (4.35), we
see that (4.28) readily follows by (4.19) and (4.23), and that (4.29) is valid for
a proper choice of the constant c¢. We conclude with the proof of (4.30).

Take
{
L) ==Y 8x—x), + > ailx—x),.
H Jjeds ied,
Then by (4.24) we have

h; /
|0.(0)|<clp E ————— +c—|LX), xel
JjeH(E) (e — xj| + P)z h
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So we only need to estimate % |L(x)]. To this end, note that if x ¢ E, then (4.34)
implies that L(x) = 0. On the other hand, if x € E, then

h:

1, ;
i (k= xl+p)”

I !
Z|L(x)|<%<7h + 211h> <clP<clPp

where for the last inequality we have applied (4.3), (4.33) and the
estimate

hi hi h;
1=h L <16hn 7]<1601p - )
,;E B e (x| p)? ,zg; (k — x|+ p)

This completes the proof of (4.30), and in turn of Lemma 10. &

5. PROOF OF THEOREMS 2 AND 4
We begin with the

Proof of Theorem 4. Since Theorem 4 for £ =1 is trivial, we have to
prove Theorem 4 only for £>2. Given n>1, denote by G, = (x,,,x;,) the
connected components of O = O(n,Y;). For j=1,...,n—1, let 7; be
polynomials of degree <cn defined as follows:

(a) If j € H, then

fj(x) = Tj(x)a

where 7; are from Lemma 6.

(b) If j, = 0 and 0<j<J,, then 7;(x) = 0.

(c) If J, = n and j, <j<n, then 7;(x) = x — x;.

Finally, we have the j’s for which 0 <, <j<J, <n. We divide the v’s into
two groups. Let n; = 16s(k — 1)*n. We say that v € Od if there exists an
I, € H(ny, Y;) such that I, ,, n G, #0, and the interval (x;, ,, ,X;j,») contains an
odd number of points y;. Note that if v¢ Od, then the set G, contains an
even number, say 2m, of points y;, the points v +2m—1< -+ <j,, say. In this
case each two consecutive points ¥ 2, and yjy2p+1, v =0,...,m — 1, must
belong to the union of four consecutive intervals, say [x;,42.4,,X,-2.1,)
whence

m—1

{xe Gy Mx;)S" () <0} < | ety ram*t,—2m]-
v=0
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It follows by the left-hand side of (4.5) that

meas{x € G,: I1(x;)S"(x) <0} <% 4 max ||

[I‘”l g(xjp yxjv)

A5, 1G]
2 =i
|G, |
<4S4n_]
. 5.1
16(k )3| | (5.1

We need the polynomials 7;, and 7;; however, we note that j, might not be
in H. Since 2/, is always in H(2n, Y;), in the case j, ¢ H, we define £, = 1;, =
72j,20. Similarly, we always have J, ¢ H and 2J, e H(2n, Y;), so we define

‘EJ“ =1y, = 12J,2n-
(d) If 0<j,<j<J,<n and v¢ Od, then we let

Ti(x) = 1;,(x).

If on the other hand,
() 0<j,<j<Jy<n and v € Od, then we let

T(x) = 0,7, (x) + (1 = 0;)71, m (X),

where 6; = 0 or 1 is to be prescribed.
We are in a position to define P,. Recall that the piecewise linear function
L that interpolates S, at the x;’s, satisfies

1
IS — Lll< el (S,—>, (5.2)
n

and may be written in the form

n—1
Le) = 1) + Y [S:x0 1502511051 — X0 — X)),
j=1

where /(x) is a linear function. Thus, denote

n—1

P@) = 1) + Y 1813515211061 — x4 )E().
j=1
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We begin with the proof of (2.6). To this end, we show that for each j =
1,...,n—1, we have

(= x)); — H@)|<chTi(x),  xel (5.3)
Indeed, going through the various cases we see that:

(a) (5.3) readily follows from (4.21);
(b,c) (5.3) readily follows from the inequalities

h; <Gy <chj, Tv<j<Jy; (5.4)

(d) by (4.21) and (5.4),
x = xj) — T < —x))y — (0 =) |+ [ — x;) 4 — T, ()

Schjl"f(x) + ch;, sz (x) échjl“jz.(x);

and finally,
(e) if ; = 1, then we are back to Case (d), and if 6; = 0, then similarly
we have

6 = x); = T ST + 106 = x1,)5 = 1y X))

<chiI(x) + B
jj (|x - xl\‘,n|| + hlv,nl)2

< chjff(x),

and (5.3) is proved. Since it is well known that
_ 1 .
1S5 %41, %, %, 11| S ch *wf (S’Z>’ j=1...n—1,

and

we obtain

—1

Z

1L —P,l|<c

#(52)

This together with (5.2) concludes the proof of (2.6).
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In order to prove that P, € 4%(Y;) we denote

L](x) = [S;xf+]9xjaxj—l](xj—l —Xj+])fj(x), ] = 13 s, — 19

and
P,(x) =: I(x) + A(x) + B(x) + C(x) + D(x) + E(x),
where
AR =D Lix) + Y L),
JjeH Jy<n
J—1
Bx) = Lix), if j,=0,
=1
n—1
Ce= Y L), ifJ=n
j:jv+1
J—1
DX =Y > L),
veOd j=j,+1
and
J—1
E@) =Y > Lm= )Y E®).
véOod j=j+1 ve Od
It is important to emphasize that we either have j, € H or j, = J,,1, so that

indeed all 1 <j<n — 1 are taken care of.
Again we have to investigate each case separately.

(a) If j € H, then by definition of A*(Y;) we have, I (x)[S; xj41, X5, x-1]

>0. Hence by (4.19),
H()L(x) = TS5 41, %7, %1061 — X;41)7; (x) =0,

and similarly I1(x)L} (x) >0, J, <n, so that II(x)4"(x) >0, x e I.

(b, ¢) Since B and C are linear functions, we have B’(x) =0 and

C"(x) = 0.

(e) If ve Od, then by definition, we have an odd number of points

¥i € (X1,n,,X;,), which in turn implies that
H(xp, ) (x;,) <O0.

Hence, (4.19) implies

T (x)‘f}/v (x)<0, xel



COCONVEX APPROXIMATION 45

Hence for each j = j, +1,...,J, — 1, we may prescribe 0, so that
H(x)L}'(x) >0, xel.

With this choice
H(x)D"(x) =0, xel.

Finally we conclude with the proof of Case (d).
(d) If ve Od, then

J—1
E= Y L
j:.j\‘+1
Sl
=7,(0) > [Sixn )01 — Xj41)
J=it

=1, )([S; %7, X, 11, %, 1,41 — x5,) + [S5x5,,X7,-1, %5, 1(xj, — x7,-1))
=:7;,(0)ey.
By virtue of Lemma 4 and (5.1), it now follows that
II(x;, )e, = 0.

Therefore, (4.19) implies

[(x)E)(x) = 'c;" (oI () (x;,) xel.

ey
— >0,
H(Xj‘,)
Since /”(x) = 0, we have shown that P, € 4%(Y,), and concluded the proof of
Theorem 4. 1

Proof of Theorem 2. Analyzing the above proof, one notes that the only
place one needs the assumption that our function is a piecewise polynomial,
is in order to apply Lemma 4. Thus for a general f € A%(Y,), if one is
guaranteed that » is sufficiently big so that each component G, contains an
odd number of points of ¥;, in particular one point, then one may conclude
the same. If f changes convexity just once, then obviously the requirement
that each component G, contains an odd number of points of ¥, specifically
one point, holds for all n>1. This proves Theorem 2. 1

Remark. In view of the above discussion we see that we always have
estimate (2.4) for n>=N = N(Y;). This is of course weaker than (2.1) and we
only mention it since we have got it for free.
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6. SMOOTHING LEMMAS

Let /;; be the smallest closed interval, containing /; and /;, and denote
hij = |l;;]. For § € Xy, set

h k
ai,j(S) = ||pl p]”[ ( > s la] = 17' ce,n, (61)
ij

where || pll;, = max{|p(x)|: x € [;}.

We are going to call an interval 4 a proper interval if its endpoints belong
to the Chebyshev partition, that is, are among the x;’s. For any proper
interval A4, let

ai(S,4) = max a; ;(S),

where the maximum is taken over all 7, j, such that /; € 4 and /; c 4. Finally,
write

a(S) = a(S,1).
Then, by virtue of [10, Lemma 9] we have

a(S)<cof (S, %) <cai(S). (6.2)

Givenx € [, if 0 € [x — ho(x),x + ho(x)] < I, then we have @(x) <2(h + @(0)).
If Se%;,, 8 is absolutely continuous in 7, whence for 0<h<1/n,

5 x+he(x)
A0S = ‘/ (S'(2) = S'(t — ho(x)) dt

X+he(x)
S”"(u) du dt
t—ho(x)
x+he(x) .,
pn(u)S (u) du dt
mm(h2 —hp(x)
(hQD( ))2 | 2 //H
S min(2? + hp@)2 " °
< 4/p>S"|l,

where the minimum is taken above on 0 € [x — ho(x),x + ho(x)]. Hence, if
Se Z}M, then

ol 1
f (5.~ ) <cllps"ll (63)
n
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which in turn by (6.2), and the inequality o] (S,7)<cw3(S,?), k=3, readily
implies

Lemma 11 If S e X, then
ar(S)< cllp’s"||
Finally we have

LEMMA 12.  Suppose k=3 and S € Z,lm is such that
ar(S)< 1. (6.4)

If an interval 1, contains at least 2k — 5 intervals I;, and points x} € Il, such
that

PAIS () <1, (6.5)
then for every 0<j<n, we have
102"l <e((G — * + (G — ™). (6.6)

Proof. Fix j and xeloj. It follows by (6.1) and (6.4) that for

every i,
hi\*
Il pi — pj||1,-< (hj) .

Since p; and p; are polynomials of degree k — 1, we get

k
18! = ol < (2
PP Sn\ny )

In view of (4.3) and (4.5), we see that (6.5) implies

c(h\* ¢
FACHIES (’) i

i\ b
k
<£<@>
h2\ h;
c . .
< =1+ 1)*. (6.7)
J
By assumption there are k£ — 2 points x:“ €lyy, m=1,...,k—2, each two

being separated by an interval /; < /,,. Recalling that x € /;, we have for
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each 1</<k—2and 1<m<k — 2, with [#m,
Ix — x*

i h‘i,,, . ) . .
sl — il + 1)< - 0+ G = V), (6.8)
|xil - xim h

Im

Now, by virtue of the representation
k=2 k= *

X —X;

/1 _ 110 % im
pi(x) = E p;(x; * %
J J 1 X — x?

=1 m=lm#Il "l Iy

we obtain from (6.7) and (6.8),
p*I18" (0| = PPl P ) <k pj )l <e (G — w0 + (=79,
X € Ioj

and the proof is complete. I

7. ZERO-PRESERVING APPROXIMATION
We begin with a technical result. Namely,

LemMmaA 13, For s e N, let 2° vectors a; = (aoy, a1, -.,as-11), [ =0,...,
2% — 1, be given so that sgna,; = (—l)‘s“*’, 0<v<s— 1, where 6,; € {0,1} is

from the representation | = Zf;g) 0v,12". Then there are 2° positive numbers o;

such that

25—1
> wa =(0,0,...,0). (7.1)
1=0

Proof. The proof by induction is straightforward. &
Next we need

LeEMMA 14. Let K(x) be a continuous strictly positive function on I, and let
0<i*<s be fixed. Then there exist s interlacing points y, 1 <t;<y;, i =0,
..., 8, [ # 0%, such that the function

O(x) = P(x, K, i*, Y;) = / K (u)IT*(u) H (u—t;)du (7.2)
-1 i=0,i #i*
(if s = 0, then the empty product = 1) satisfies

D'(y)=d"(y) =0, 1<i<s, (7.3)
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and

B(y) = (1), 0<i<i, (7.4)
W= =), F<i<st 1 '
Proof. Since (7.3) is self-evident for any choice of {#;}, we prove that we
may select them so as to yield (7.4). For each 0</<2° — 1 and every 0<i
<s, i#1%, we take yi; € {);, yiy1}, such that for u € (y;i1, yi),

= -y = | CO5 <P
sgn (T(w)(u — yu)u — y;) = A
g Vi yJ (_1)(),-,]_/’ i> i*,
and denote
20 = [ K@ ] -
-1 i=0,i # i*
Now, for

D)) — Di(yig1), l<l*,
s { 1(37) — Di(yip1) @5)

D1(yis1) — Pi(yig2), =¥,

it follows that sgna;; = (— 1)°; therefore by Lemma 13 there are 2° positive
numbers o; such that

2—1

> waosas,....a;10) = (0,0,...,0).

=0

Set

-] |
d(x) = (Z oc;) > @) (7.6)
1=0

=0

Then @ is the required function. Indeed, for each 0<i<i*, we have

21 »-1
> w@i(yisn) — @) = Y wai =0,
1=0 =0

which implies (7.4) for 0 <i<i*. Similarly we have (7.4) for #*<i<s+ 1. By
its definition,

P(x) = [ 1 K(u)IT*(u)Py(u) du, (7.7)
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where Py(x) is a monic polynomial of degree s. By Rolle’s theorem (7.4)
implies that @'(x) has a zero in (y;;1, ), 0<i<s, i #i*. Hence by (7.7), ®(x)
possesses the representation (7.2). 1

Let j € H and let 0<i;<s be such that y; 1 <x;<}y;. For a fixed integer
b>=6(3s + 1), denote

Tj(x) = Tiu(x, b, Yo) = d; )y P, 1,0, Yo, (7.8)
where #; was defined in (4.12) and where d;y, , is chosen so that T;(1) = 1.

Evidently, it is a polynomial of degree < Cn. A proof similar to that of (4.18)
yields

., h; b
v (x)—T:(x)|<C 7j> s xel, 7.9
1,00 = 7(x) (|x—xj| o (79)

where by = 2b — 3s — 1.

For the rest of this section we assume that s> 0, otherwise many
of the statements are vacuous and there is nothing to prove. For
jéH, let j* be the closest element to it from H (if there are two
such elements, then we take the bigger one), and denote by I;“ the
connected component of O (the closure of O), that contains x;.

Since the interval 1]’.l= contains at most 3s intervals 7,, we conclude from
(4.5) that

hy <|IF|<(3s)h;. (7.10)

In order to use a unified notation we denote for j € H, j* := j, and I ;" =11t
follows by (7.10) that (7.9) is valid also for the polynomial

Tix) = Tju(x,0,Ys) = Tpn(x,b0,Y,),  jéH. (7.11)
We summarize the above in the following:

LemMaA 15.  For every 1<j<n,

TOon=T/m=0, 1<i<s, (7.12)

1) — T,(») =0, I1<i<s, y ¢17, (7.13)
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and

§ h b
1,0 — Ty <c(m) ,
Set
T\(x) = T1,(x, b, Yy) = T1,(x, b, Yy),
T,x) = Tyn(,b,Y) =1 — T, 1 ,(x,b,Yy),
Ti(x) = Tja(x,b, %) i= Tja(x, b, ¥;) — T)j_1,4(x, b, Yy),

Then we prove

LEmMA 16. The following relations hold:

Z T(x)=1,
j=1

51

xel. (7.14)

2<j<n—1.(7.15)

(7.16)

T =T)=0 1<i<s, 1<j<n,

T(m =0, 1<i<s, 1<j<n,

and

Wé I, (7.17)

. c h; b
177 ()| < (f) xel, 1<j<n, 0<g<s+2.  (7.18)

E P — x| + A;

Proof. Obviously, (7.16) is self-evident, and (7.17) and (7.18) with ¢ = 0
readily follow by (7.12)—(7.14). One can deduce (7.18) for g > 0 from the case
g = 0 in the standard way, using Dzyadyk’s inequality (see, e.g., [4, p. 262];

see also [12, p. 118)])
lp* ' Pl <dllp*Pull,

where d = d(«) is independent of n. 1

Now let n; be divisible by n and for every 1<;<n, denote

Tin () = Tjm b, Y) = Y Top(x,b,Yo).

Lm<l

Clearly it is a polynomial of degree <Cn;. We have
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LEMMA 17.  The following relations hold:

Z Tinx) =1,
=1

! . .
Tj’nl(yl') - Jnl(yl) - s 1<Z<S5 1<j<n7

Tj,m(%):(), 1<i<s, 1<j<n, y &I,

and

~(q) C p”](x) "
|77, )l <Pn1 ()7 (pm(X) + dist(x,[;)) ’

xel, 1<j<n, 0<g<s+2,

where by = %(bl — 1.

(7.19)

(7.20)

(7.21)

Proof. Relations (7.19) and (7.20) follow immediately from (7.16) and
(7.17), when we observe that if 1, ,, < I, then I}, < Ij* Thus we just have to

prove (7.21). Note that (4.3) and (4.4) yield

< hv,nl >2<C pnl(x)
e — xu |+ Ao, e — Xy | + Pnl(x)

Now if x <x;, then it follows by (7.18) that

by
~(q) v,
T <C E -
p1| 1n1(x)| < x»n1|+hvn1>

‘ncl

<Cpl(x) P
\; (xr — xv,,l|+pm(x))b 2

du

<Cp, ()™ —_—
pnl( ) mx (M + pnl(x))szrl

_ P " P () »
B C(pnl(x) +x;— x) N C(pm (x) + dist(x, IJ-)) ’

Similar proofs yield (7.21) if x;_; <x, and if xe /;. 1
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Let S € X4, take n; divisible by n and set
np -
Dy () = Dy, (5, 8) = > pi) T, (x,b, Yo), (7.22)
=1

evidently a polynomial of degree < Cn;. Finally, denote
O, ={ueO: u—1Lp,w,u+ip,w)cO}u(Onvl)).

Recall that 4 is a proper interval if its endpoints belong to the Chebyshev
partition. We have

LEMMA 18. Let b3 =by —s — 2k — 6> 0, and let A be a proper interval.
For S € 2y ,(Yy),

D ) £ ”<p> bs
1S (x) = D, (x)] S (ak(S’A) ) ni\p +dist(x.1\4)/) )’

x€dn 0, ¢q=0,...5s+2. (7.23)

Furthermore, if S € Z}m, then for x#x;, 0<j<n,

" /! ¢ ? - ’
18" = D} I <75 (“"(S’A) TS (M) ) ’

xeA. (7.24)

Proof. The proof of the two statements is similar and we will
proceed simultaneously in both. Fix I,cAn O (or simply I, c4,
if we prove (7.24)), and let xe I, n O, (or simply x €1l,) be such that,
say,

X — X, <Xy_| — X. (7.25)

For the sake of brevity, we will write in this proof p, for p, (x), Tj for Tj,nl,
and a,; for a, ;(S). By (6.1),

h k
v,

Il py — pj”Ir = Qy,j <h—1) 5
J

whence, for each r e N,

¢ oy v (b
r _ R, <J JALTAN I
||pv pj ||]\‘ hC <hj>
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First let j#v,v + 1. Then (4.3) and (7.25) imply dist(x, {;) > %p. Hence (7.21)
combined with (4.3) and (4.4) yields

7 r ~( 7'”)
127 = V1T )l
k by
G o)
wo\ h; ) pT \p; + dist(x, 1)

<Cav,j <hv,j>k+1 /’l] 1 ( ) )bz
S\ ki) hgpT \py o+ dist(x, 1)

< Cay (P + dist(x, 11)) 2(k+1)h_,~ 1 ( o1 q—r+1
b B, P hy 17" \py + dist(x, )

bz*l]“rr*l
0
X | ———
(p + dist(x, I_,))

<Cav7j & 1 o by+1
= A par\ p + dist(x, 1)

Lan b 1 byl < < (7.26)
\—._ N i\ 4 ., -~ ) \r\ ) .
pq ni P 7 p —+ dlst(x, [/) q

where in the third inequality we applied the third inequality in (4.3) and
(4.4), in the next one we used the fact that dist(x, /;) > %p, and in the last we
have applied the straightforward inequality

pr_n
p m

Now, by virtue of (7.19) we may represent S@(x) — D'%(x) as

SDx) = D) = ((p(x) = Prs1 (N Ty1(x)

D+ D> @ = peT )

Licd,j#vyv+1 L ZAj#vv+1

=:01(x) + 02(x) + 03(x),

where we write p,1 = p,, if v=n.
We begin with the estimate of ¢;. Note that if v = n, then ¢; = 0, so that
we may assume that v<n. We need separate arguments for (7.23) and (7.24).
First we deal with (7.24). Since S € Eln, q =2, and I, C A4, it readily
follows that ’

C
||Pi/ - P:,/+1||1‘, <Eav,v+la
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which in turn implies

|py(x) — Pl (0 =

X c
/ (= ) | < S =)
and

C
|2e(®) = prr1 ()] <z Ayt (x — x,)

Therefore, by (7.21)

c x—x,  (x—x) P >
|01(x)| <ﬁav,v+l I+ + |

P pi P+ —x
c o by—2
<=y | —A—— ) 7.27
‘ ,Vﬂ(pl +|x_x‘,|) (7.27)

Now, if 1,4 < 4, then (7.27) implies
C
|Jl(x)|<;ak(SaA); (7.28)

and if 1,,| & A, then (7.27) yields

00l < sy 2L )M
p? p py+ I —x|\py + b —xl
c 0 p P by—3
<Z as)t
Fa =)
C n
<—2ak(S)i<7. - ) . (7.29)
p ny \dist(x, 7\ 4)

Now we establish (7.23). Since x € O,, v¢ H. If also (v+ 1)¢ H, then S e
Y a(Ys) implies p, = p,y1. Hence o = 0. Otherwise, (v+ 1) € H, so that
x € O, implies x — x, > p. Therefore (7.26) holds for j = v+ 1, and we may
absorb o either in ¢; or in a3, as the case may be, and which we estimate
below.

What is left is to estimate o, and o3. It follows from (7.26) that

Ca(S) n 4, "
prom LA j#v+1 (p + dist(x, [j))b3+1’

by
<LalS)n < P ) . (7.30)
p? ni\p + dist(x, 7\ 4)

lo3(x)| <
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Similarly, if dist(x, [,+) == min{dist(x, /,_), dist(x, /,.»)}, then we obtain

Ca(S,A)n ( p >b3 _ Cay(8,4)

o2 (x)] < .
p? p + dist(x, I,x) pe

(7.31)

Thus (7.23) follows by combining (7.30) and (7.31) with the above
discussion of ¢, and (7.24) is obtained by combining (7.28)—(7.31). This
completes the proof. 1

The following result is almost trivial.

LEMMA 19. If S € X, then

IS — D, | < Ca(S). (7.32)
Moreover, if S € Z; ,(Y;) and
S"(y)=0, i=1,...,s (7.33)
then
D}, (y:) =0, i=1,...,s. (7.34)

Proof. The proof of (7.32) is similar to that of (7.24), in fact easier, so we
only prove (7.34).

To this end fix 1 <i<s, and let v be such that y; € /,. Since p; = p,, for all
I; c IF, then

D)) (y) = Z (BT () + PONT 00 + Y PIONT ()

L ZT*

+ Pl > Ti(m).

Iicr¥

Now, by virtue of (7.20), the first and the second sums are zero, and since
pl(y) = S"(y) =0, it follows that the third term vanishes. I

Finally we have

LemMa 20. If A is a proper interval, SeZ,Ln(YS), and (7.33) holds,
then

o) Dl ) <) by
15" (x) — D! (¥)] < <k<5 A>+“k(S)_(m> )

xed, (7.35)

where Cy = Cy(k, s, b), and recall that n(x) is from (4.8).
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Proof. Let x € 4. First observe that if xé¢ 0., then 7(x) > c¢. Indeed, if
x¢ O, then it follows from (4.9), and we only have to check the case where x
is in a connected component, say [x,,x,], of O and either x 4 p/2 > x, and
v>0,orx— p/2<x, and u<n. Clearly, we have to worry only about y,’s in
this component, so let y; € [x,,x,]. It is easily seen that x 4+ p/2 is increasing
in [—1,x;] and that x — p/2 is increasing in [x,_;,1]. We will show that
xy<x+p/2 and x<25 cannot hold simultaneously. Indeed if x, <x +
p/2 and x,;; <x<x,, then x, <x + p/2<x + |[,41|/2, which yields that x —
Xy+1 > [L,41]/2. Since x + p/2 is increasing, this in turn implies that if x <x,1,
then x + p/2 <x,. Hence if x, <x + p/2, then x — y;=x — x,41 > |[,41]/2, s0
that

vy a2 1
X—Yyi+p |Iv+l|/2+|1v+l| 3

The case x — p/2<x, is symmetric. Thus (7.35) follows by (7.24).
If, on the other hand, x € O, c O, then x e[}", where Ij’." is a connected
component of O, such that

0, )< |I]*| <cp,(u), ue If, (7.36)

and we have

S(u) = pj(u), uelf. (7.37)

This together with (7.36) implies that for 4, := A4 U I}, which is a proper
interval, we have a;(S, 41) <cai(S,4). Set

I¥ =TI O..

Since x e I¥, dist (x,/\I¥)>p/2, and by (7.36), dist (x,/\[¥) <|IF|<c dist (x,
I\I¥). Hence

dist (x, 1\41) <|I7| + dist (I7,1\4))
<cdist (x, 1\ I}) + dist (x, 1\ 41)
<cdist (x,7\4)), xel’

By virtue of (7.23) we thus obtain

C
|S@ _Dﬁlql)”]jgwg, g=0,...,s+2, (7.38)
J

with

b
Q = ay(S, A) + ay(S)— 17
=a ) a — N 5
* I + dist (1, 1\ 4)
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where we used the fact that dist (I;",I\Al) > dist (I;“,I\A). It remains to prove
that

n(x)
Ik

18" (x) — D)) (x)| < (7.39)

To this end, let

i (x) = H _— | + o (x) = H = i

TR
Ve]* _Vi¢[;k |x_yl|+p

so that n(x) = 7 (x)ma(x). If y; ¢ I, then |x — y;| > p/2, whence my(x)>37".
Therefore we have to prove (7.39) with 7;(x) in place of n(x). Now by (7.37)
S — D, is a polynomial in ¥, and (7.33) and (7.34) imply

S/,(J’i)*DZI(yi):O, i=1,...,s

Hence, if y;,, 1<u<I<s, are the points of ¥; in II’.*, then there is a 0 € I,
such that

!
18" (x) — Dy ()] =18"20) = DO ] b — 3

- CQ k- i
P I
<Cn1(x)

S )
17|

B

where in the first inequality we applied (7.38) and for the second we used the
inequality |x — y; |+ p <c|[;k|. This completes the proof of (7.39), and of our
lemma. &

We are in a position to prove Theorem 5.

8. PROOF OF THEOREM 5

Recall that we may assume that £>3. We begin with notation. Given
A < I denote

U 5. 4*=w@)y and 4=y
LinA#(

Without loss of generality we may assume that

a(S)<1, (8.1)
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so that in view of (6.2), in order to prove our assertion, we have to find a
polynomial P, of degree <cn, such that

IS — Rill<c (8.2)

and
P!(x)d(x) =0, xel, (8.3)

where d(x) was defined in (4.7). We fix b so big that b3 =25(s + 1) (b3 was
defined in (7.29)). This makes Cy(k,s, b), the constant in (7.35), dependent
only on &k and s so we denote ¢, := Cj. Fix an integer c¢3 such that

c3=zmax{8k/cy, 12s}, (8.4)

where ¢; is the constant from (4.28), and without loss of generality we may
assume that #n is divisible by c3, i.e., n = Nc3, where this defines N.
We divide 7 into N intervals

Eq = [quS,X(q,I)CS] = Iqq e v I(q71)63+13 q = 19 e 7N'
We will write j e UC (for “Under Control”), if there is an x € /;, such that

56’2

w%ﬂszp (8.5)

and we will say that ¢ € Gy, if E, contains at least 2k — 5 intervals /; with
j e UC. We will say that g € G, if either g € Gy, or there is a ¢* € Gy, such
that

v=0,1,....¢*—q,  if ¢*>q,
Ee+vﬁ0¢®, q q . q q (8,6)
1 v=0,—-1,...,4* — g, if g*<gq.

Note that if ¢ € G\Gy, then |g — ¢*|<2s, hence (8.1), (8.5) and Lemma 12
imply
llo>S" Iz, <e. qeG. (8.7)

Now set

E=J E,

q9¢G

and decompose S into a “small” part and a “‘big” one by setting

S"(x), if x¢ E°,
s1(x) = . .
0, if xekE®°,
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and s; .= 8" — 51, and finally putting
Six) =S+ &+ DS(-D+ /j(x — u)sy(u) du,
SH(x) = /Xl (x — u)sy(u) du.

(Note that s; and s, are well defined for x #x;, 0<j<n, so that S; and S, are
well defined everywhere and possess a second derivative again for x#x;,
0<,j<n. Thus from now on whenever we write S/(x) we will mean x#x;,
0<j<n.) It follows from (5.6) that S;,5; € Z,Ln(Y). Evidently,

S7(x)d(x) =0, xel, and S§7(x)d(x)=0, xel.
Lemma 10 and (8.7) imply
ar(S1)<c,
which by virtue of (8.1) yields
(S <c+ 1<[c+2]=:cy. (8.8)

The set E is a union of disjoint intervals F,, = [a,, b,], between any two of
which there is an interval £, with ¢ € G. We may assume that n > c3c4, and
write p e AG (for “Almost Good”), if F, consists of no more than c4
intervals E,, in particular if it consists of no more than c3c4 intervals /;. Set

F=|J F

p¢AG

and let

S”(x), if x e F¢,
Sq4 =
4 0, otherwise,

and s3 .= S” — s4. Now put

S3(x) = S(—D) + (x+ DS (—1) + /X (x — u)s3(u) du,
-1
S4(x) = / j (x — u)s4(u) du.

Then evidently
83,84 € 2}, (Yy), (8.9)

S5(x)6(x) =0, xel, (8.10)



COCONVEX APPROXIMATION 61
and
S4(x)6(x) =0, xel. (8.11)
For p e AG, Lemma 12 and (8.8) imply
1S500] = [S5)] <§, xeF,.

Hence

|S§’<x)|<§, xel, (8.12)

which by virtue of Lemma 10 yields a(S3) <c, whence by (8.1),
a(Sy)<c+ 1<[c+ 2] =:cs. (8.13)

In view of (8.9), (8.10), combining Theorem 4 with (8.12) and (6.3), we
obtain the existence of a polynomial », which is coconvex with S, and such
that

IS5 — rall <ec. (8.14)

Since
s4(x) = §"(x), xeF?,

then by (8.1) we have for p¢ AG

ai(Ss, ) = ar(S, F) <ar(S) < 1. (8.15)
Also for such p,
s4(x) = Sy (x), xe F;e.
Hence from (8.8)
ak(S4ane) = ak(Sz,F;e)Sak(Sz)SCm (8.16)

We still have to approximate S4. To this end, applying Lemma 9 we
construct three polynomials Q, and M,, of degree <cn and we let D, (-, Ss) of
degree cn; be defined by (7.22).

We begin with Q,. For each ¢ for which E, c F, let J, be the union
of all intervals I, c E, with je UC. Recall that g¢ G. Therefore by
(8.4), the number of such intervals is at most 2k — 6 <c3/4, and the total
number of intervals in £, is ¢3. Thus Lemma 9 is applicable for each E,
and if we set

Qn = Z Qn('aEanq)s
E,cF
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where on the right-hand side are the polynomials guaranteed by Lemma 9
(Ou(-,Eq,Jy) = 0, if J, = 0), and denote

J = U Jys

E,CF
then we conclude that Q, satisfies

0/ (x)d(x) =0, xel\F, (8.17)

0l(x)d(x) = 7? xeF\J, (8.18)

0iwam="0 xed. (8.19)

Note that (8.17)—~8.19) follow since for any given x all relevant Q//(x, E,,J,),
except perhaps one, have the same sign. Finally, it follows from (4.30) that

1Onll<c. (8.20)

Next we define the polynomial M,. For each F, with p¢ AG, let J,- denote
the union of two intervals, in the left side of F 28\ F and let J,+ denote the
union of two intervals in the right side of F' ;"\ 14;7 Slmﬂarly, let F,,- and Fy+
be closed intervals, each consisting of / := c3c4 intervals /; and such that
Jp CFy gF;e and J,r € Fpr gF;e. Now we set

M, = Z (O, Fpry I pt) + On(, Fp, I p-).

p¢AG

Since [ = c3c4 and u =2, it follows from (8.4) that clﬁ>204. Again by
Lemma 9

M (x)d(x)=> — 2? xeF, (8.21)
2647‘[(x)

M (x)d(x) = e F*\F, (8.22)

and

( ) 0 25(s+1) X
M (x)é( )/ (W) . XGI\F . (823)
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where in (8.23) we used the inequality
max{p, dist (x, F*°)} <dist (x, F¢),  xel\F*.

Finally, it readily follows from (4.30) that
1M, ]| <c. (8.24)

The third auxiliary polynomial, the properties of which we need to recall, is
Dy, = Dy, (-,S4). By (8.13) and the choice of b, Lemma 19 yields

1S4 = DujlI<c, (8.25)

and Lemma 20 combined with (8.9) and (8.11) implies that for any proper
interval 4

: , ( ) cyesm(x) n p B
1S4 (x) — D, (x)| < a(Sa,4) + p? <dist(x, I\A)) ’
x e A. (8:26)

Put n; .= ¢sn and write

R, = l)n1 + 20, + oM, (8.27)

By virtue of (8.20), (8.24), and (8.25), we obtain
1S4 — Rull<c.

Combined with (8.14), this proves (8.2) for P, .= R, + r,. Thus in order to
conclude the proof of Theorem 5, we should prove that (8.3) holds for our
P,. To this end, we recall that r, is coconvex with S so that we only have to
deal with R,. Since (8.26) holds for any proper interval 4, we will prescribe
different ones as needed. As long as x € F, it suffices to take 4 = F,, where p
is such that x € F,. Then the quotient inside the big parentheses in (8.26) is
bounded by 1, for all x € F, and (8.15) and (8.26) yield

crm(x)

(&x () Czcsﬂ(x) n <o =

ai(Ss, Fy) +
ni P
xeF. (8.28)

[S5() — Dy ()] <

If x € F2¢\ F, then it suffices to take 4 = Fje, where p is such that x e F;", and
similarly (8.16) and (8.26) imply

2()

crcqm(x)
2 b

czcsn(x) ny
no p

xeF%, (8.29)

[S5(x) = Dy ()| S =5 ax(Sa, F¥) +
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Finally, if x € I\ F?¢, then we take 4 to be the connected component of /| F°*¢
that contains x. Then by (8.26),

|S4(x) — D}y, ()]

ea(r) cresm(x) n < p >25(s+1)
Sia S ,A + o 1
e 5 (84, A) p>  mi\dist(x,7\4)
25(s+1)
cam(x) p ?
) e 8.30
i (dist(x’ Fe)) . xel) (8.30)

Since by (8.27)
R, (x)0(x) > 020, (x)3(x) + c2M,(x)3(x) + S} (x)0(x) — IS5(x) — D}, (x)],
xel,
it follows by (8.19), (8.21), (8.11) and (8.28) that

crm(x)
02

RI(x)8(x)> (4-240-2)=0, xel.

If x € F\J, then (8.5) is violated so that

502 502

Sy (x)d(x) > ? > ?Tc(x).

Hence by virtue of (8.18), (8.21) and (8.28), we get

cm(x)
02

RI(x)d(x) = (-1-24+5-2)=0, xeF\J.

Next, if x € F?¢\F, then by (8.17), (8.22), (8.11) and (8.29), we obtain

R!(x)d(x) = 0. (8.31)
Finally, (8.11), (8.17), (8.23) and (8.30) imply (8.31) for x € I\ F?.
Thus, (8.31) holds for all x € /, and so we have constructed a polynomial
P,, satisfying (8.2) and (8.3), for each n > ¢, divisible by c3. For all other »’s,
Theorem 5 follows by the inclusion

i) € 2 (Xo).

This completes the proof. 1
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