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Let f 2 C½�1; 1� change its convexity finitely many times, in the interval. We are

interested in estimating the degree of approximation of f by polynomials which are

coconvex with it, namely, polynomials that change their convexity exactly at the

points where f does. We discuss some Jackson-type estimates where the constants

involved depend on the location of the points of change of convexity. We also show

that in some cases the constants may be taken independent of the points of change of

convexity, but that in other cases this dependence is essential. But mostly we obtain

such estimates for functions f that themselves are continuous piecewise polynomials

on the Chebyshev partition, which form a single polynomial in a small neighborhood

of each point of change of convexity. These estimates involve the k modulus of

smoothness of the piecewise polynomials when they themselves are of degree
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1. INTRODUCTION

Let f 2 C½�1; 1� change its convexity finitely many times, say s50 times,
in the interval. We are interested in estimating the degree of approximation
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COCONVEX APPROXIMATION 21
of f by polynomials which are coconvex with it, namely, polynomials that
change their convexity exactly at the points where f does.

In a recent survey [9] we have collected all known positive and negative
results on monotone and comonotone approximation on a finite interval, by
algebraic polynomials in the uniform norm (see also [8]). We have
established complete truth tables for the validity of Jackson-type estimates,
involving the ordinary kth moduli of smoothness of the rth derivative of a
given monotone or piecewise monotone function, as well as estimates
involving the Ditzian–Totik moduli of smoothness. The two main
ingredients in the proofs of all positive results in these truth tables were
first the approximation of an arbitrary such function by piecewise
polynomials with the same changes of monotonicity, and then the
approximation of such a piecewise monotone piecewise polynomial, by
polynomials with the same changes of monotonicity. See [10] for details.

Our intention in our research program is to construct the corresponding
truth table for convex and coconvex polynomial approximation. The main
thrust in this paper is to obtain Jackson-type estimates for the approxima-
tion of a continuous piecewise polynomial which changes convexity finitely
many times in the interval, by algebraic polynomials that change convexity
at exactly the same points. The main result is Theorem 3 stated below, which
is the analogue of [10, Proposition 3]. Our strategy for the future is to
approximate an arbitrary continuous function that changes convexity
finitely many times in the interval, by an appropriate coconvex piecewise
polynomial which in turn, by virtue of Theorem 3, will be approximated by
a coconvex polynomial. In order to illustrate the intricacies, we begin in
Section 3 with some negative results for the coconvex polynomial
approximation of more general piecewise convex functions (see Theorem
1). Also as a byproduct of Theorem 4, we obtain one significant positive
result for coconvex polynomial approximation (Theorem 2). So the outlay
of the paper is the following. We state the main results in Section 2. Section
3 contains the construction of the negative results. Section 4 contains
auxiliary lemmas. Section 5 is devoted to the proof of Theorem 4 which is a
preliminary step and a special case of Theorem 3, and as a byproduct, its
proof yields a proof of Theorem 2. We need some more preparation and
lemmas in Sections 6 and 7, and in Section 8 we prove Theorem 5 and with it
conclude the proof of Theorem 3. Many of the methods we apply are
modifications of similar ones in the papers by DeVore, Dzyubenko,
Gilewicz, Kopotun, Mania, Yu and the authors (see the References).
Nevertheless, for the sake of completeness, proofs are given.

In the sequel we will have positive constants c that depend only on s and
k; and we will have positive constants C; which may also depend on b 2 N:
We will use the notation c and C for such constants which are of no
significance to us and may differ on different occurrences, even in the same
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line. However, we will have constants with indices c0; c1; . . . ; c5 and C0; when
we have a reason to keep track of them in the computations that we have to
carry out in the proofs.

2. THE MAIN RESULTS

Let I :¼ ½�1; 1� and denote by C and Cr; respectively, the space of
continuous functions, and that of r-times continuously differentiable
functions on I ; equipped with the uniform norm

jjf jj :¼ max
x2I

jf ðxÞj:

Given f 2 C; and k 2 N; let

Dk
hf ðxÞ :¼

Xk
i¼0

ð�1Þk�i k

i

 !
f x�

k
2
hþ ih

� �

be the symmetric difference of order k; defined for all x and h50; such that
x
 k

2
h 2 I :

The Ditzian–Totik (DT-)moduli of smoothness [3] are defined by

oj
k ðf ; tÞ :¼ sup

04h4t
sup
x

jDk
hjðxÞf ðxÞj; t50;

where jðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � x2

p
; and the inner supremum is taken over all x such that

x
 k
2
hjðxÞ 2 I : We also deal with the ordinary moduli of smoothness which

are given by the above with jðxÞ � 1 replacing the above j; namely,

okðf ; tÞ :¼ sup
04h4t

sup
x

jDk
hf ðxÞj; t50;

where the inner supremum is taken over all x such that x
 k
2
h 2 I :

Denote by Ys; s 2 N; the set of all collections Ys :¼ fyig
s
i¼1; such that

�15ys5 � � �5y151; and for s ¼ 0; we write Y0 :¼ f|g: For later reference
set y0 :¼ 1 and ysþ1 :¼ �1: Finally, let D2ðYsÞ denote the collection of all
functions f 2 C that change convexity at the set Ys; and are convex in ½y1; 1�:

Given n 2 N; n > 1; we set xj :¼ xj;n :¼ cosðjp=nÞ; j ¼ 0; . . . ; n; the Cheby-
shev partition of ½�1; 1�; and we denote Ij :¼ Ij;n :¼ ½xj; xj�1�; j ¼ 1; . . . ; n: Let
Sk;n be the collection of all continuous piecewise polynomials of degree
k � 1; on the Chebyshev partition and let S1

k;n � Sk;n be the subset of all
continuously differentiable such functions. That is, if S 2 Sk;n; then

SjIj ¼ pj; j ¼ 1; . . . ; n;
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where pj 2 Pk�1; the collection of polynomials of degree 4k � 1; and

pjðxjÞ ¼ pjþ1ðxjÞ; j ¼ 1; . . . ; n� 1;

and if S 2 S1
k;n; then in addition,

p0
jðxjÞ ¼ p0

jþ1ðxjÞ; j ¼ 1; . . . ; n� 1:

Given Ys 2 Ys; let

Oi :¼ Oi;nðYsÞ :¼ ðxjþ1; xj�2Þ; if yi 2 ½xj; xj�1Þ;

where xnþ1 :¼ �1; x�1 :¼ 1; and denote

O ¼ Oðn; YsÞ :¼
[s
i¼1

Oi; Oðn; |Þ :¼ |:

Finally, we write j 2 H ¼ H ðn; YsÞ; if Ij \ O ¼ |:
Denote by Sk;nðYsÞ � Sk;n and S1

k;nðYsÞ � S1
k;n; the subsets of those

piecewise polynomials for which

pj � pjþ1; whenever both j; ðjþ 1Þ =2 H :

We wish to approximate a general function f 2 D2ðYsÞ by means of
polynomials which are coconvex with f ; that is, which belong to D2ðYsÞ: We
denote by

Eð2Þ
n ðf ; YsÞ :¼ inf

pn2Pn\D2ðYsÞ
jjf � pnjj;

where Pn is the set of polynomials of degree not exceeding n:
In a recent paper [7] with Kopotun, we proved that if a function

f 2 C½�1; 1� changes convexity at Ys; then

Eð2Þ
n ðf ; YsÞ4coj

3 f ;
1

n

� �
4co3 f ;

1

n

� �
; n5N ; ð2:1Þ

where c ¼ cðsÞ is a constant which depends only on s; and N ¼ N ðYsÞ is a
constant which depends on the location of the points Ys: On the other hand,
Wu and Zhou [14] proved that for k54; estimate (2.1) cannot be had with
o3 replaced by ok ; and Pleshakov and Shatalina [11] have just proved that
(2.1) is not valid with N ¼ N ðsÞ replacing N ¼ N ðYsÞ:

In this paper we will prove that if s > 1; then even

Eð2Þ
n ðf ; YsÞ4co f ;

1

n

� �
; n5N ; ð2:2Þ
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is not valid with N ¼ N ðsÞ replacing N ¼ N ðYsÞ: In fact we prove more,
namely,

Theorem 1. For no k51; r ¼ 0; 1; 2; 3 and s52; is it possible to have

constants c ¼ cðk; r; sÞ and N ¼ N ðk; r; sÞ; depending only on k, r and s, such

that the inequality

Eð2Þ
n ðf ; YsÞ4

c
nr

ok f ðrÞ;
1

n

� �
ð2:3Þ

holds for all n5N and for all f 2 C
r \ D2ðYsÞ:

On the other hand, we show that if s ¼ 1; then (2.2) is valid for N ¼ 1; in
fact we prove

Theorem 2. Let f 2 C\ D2ðY1Þ; that is, changes convexity once on

½�1; 1�: Then

Eð2Þ
n ðf ; Y1Þ4coj

2 f ;
1

n

� �
; n51: ð2:4Þ

As mentioned above, in view of [11], (2.4) is the best that one can expect.
However, our main positive result is

Theorem 3. For every k; n 2 N and s 2 N0 there are constants c ¼ cðk; sÞ
and cn ¼ cnðk; sÞ; such that if S 2 Sk;nðYsÞ \ D2ðYsÞ; then there is a polynomial

Pn 2 D2ðYsÞ of degree 4cnn; satisfying

jjS � Pnjj4coj
k S;

1

n

� �
: ð2:5Þ

Theorem 3 is trivial for k ¼ 1; since S1;n � P0: On the other hand it is new
for k54 even for convex approximation, namely, the case s ¼ 0: As was
proved by Shvedov [13], (2.5) cannot be had for a general convex function f
(that is s ¼ 0), with k54: The proof for k52 is divided into two stages. First
we prove a special case of Theorem 3, which in particular proves it for the
case k ¼ 2; namely,

Theorem 4. For every k; n 2 N and s 2 N0; if S 2 Sk;nðYsÞ \ D2ðYsÞ; then

there exists a polynomial Pn 2 D2ðYsÞ; of degree not exceeding cn, such that

jjS � Pnjj4coj
2 S;

1

n

� �
: ð2:6Þ
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Then we note that by virtue of Lemma 1, in order to conclude the proof of
Theorem 3, it suffices to prove

Theorem 5. For every k; n 2 N and s 2 N0 there are constants c and cn;
such that if S 2 S1

k;nðYsÞ \ D2ðYsÞ; then there is a polynomial Pn \ D2ðYsÞ of

degree 4cnn; satisfying (2.5).

Note that by the above, we have to prove Theorem 5 only for k53; but
the cases k ¼ 1; 2 are anyway trivial in this setting since S1

2;n � P1:

Lemma 1. Let k53: Then for each S 2 Sk;nðYsÞ \ D2ðYsÞ; there is an
*SS 2 S1

k;nðYsÞ \ D2ðYsÞ; such that

jjS � *SSjj4coj
k S;

1

n

� �
: ð2:7Þ

In particular

oj
k

*SS;
1

n

� �
4coj

k S;
1

n

� �
:

Proof. For each 24j4n; set

ajðxÞ :¼
1

2

xj�1 � xj�2

xj�1 � xj

p0
j�1ðxj�1Þ � p0

jðxj�1Þ

xj � xj�2
ðx� xjÞ

2; if j; ðj� 1Þ 2 H ;

ajðxÞ :¼
1

2

p0
j�1ðxj�1Þ � p0

jðxj�1Þ

xj�1 � xj
ðx� xjÞ

2; if j 2 H ; ðj� 1Þ =2 H ;

and

ajðxÞ :¼ 0; if j =2 H :

Also for each 14j4n� 1; set

bjðxÞ :¼
1

2

xj � xjþ1

xj � xj�1

p0
jðxjÞ � p0

jþ1ðxjÞ

xjþ1 � xj�1
ðx� xj�1Þ

2; if j; ðjþ 1Þ 2 H ;

bjðxÞ :¼
1

2

p0
jðxjÞ � p0

jþ1ðxjÞ

xj�1 � xj
ðx� xj�1Þ

2; if j 2 H ; ðjþ 1Þ =2 H ;

and

bjðxÞ :¼ 0; if j =2 H :

Finally, set a1ðxÞ :¼ 0 and bnðxÞ :¼ 0: Then,

*SSðxÞ ¼ pjðxÞ þ ajðxÞ þ bjðxÞ þ J ðxÞ; x 2 Ij;



LEVIATAN AND SHEVCHUK26
is the required function, where J is a piecewise constant function with jumps
in at most 2s points xj near the yi’s; explicitly, the jumps at these xj’s are

J ðxjþÞ � J ðxj�Þ :¼
1
2
½p0

jðxjÞ � p0
jþ1ðxjÞ�ðxj � xjþ1Þ if j =2 H ; ðjþ 1Þ 2 H ;

1
2
½p0

jðxjÞ � p0
jþ1ðxjÞ�ðxj � xj�1Þ if j 2 H ; ðjþ 1Þ =2 H :

(

Indeed, straightforward computations show that *SS 2 S1
k;nðYsÞ \ D2ðYsÞ; and

by Markov’s inequality

jp0
jðxjÞ � p0

jþ1ðxjÞj4
2k2

xj�1 � xj
jjpj � pjþ1jjIj :

Thus (2.7) readily follows by the inequality

jjpj � pjþ1jjIj4coj
k S;

1

n

� �
;

which is an immediate consequence of [10, Lemma 9] (see more details at the
beginning of Section 6). ]

3. NEGATIVE RESULTS

Given 05b51; set

g00bðxÞ :¼
�b�4ðx2 � b2Þ2; jxj5b;

0; elsewhere;

(

and let

gbðxÞ :¼
Z x

0

ðx� uÞg00bðuÞ du:

Then clearly gb 2 C
3; and it is readily seen that

jjgbjj ¼
8b
15

�
b2

6
4

2b
3
; jjg0bjj ¼

8b
15

;

jjg00b jj ¼ 1; and jjgð3Þb jj ¼
8

3
ffiffiffi
3

p b�142b�1: ð3:1Þ

Lemma 2. Given n51; for each polynomial pn of degree 4n; and

satisfying

ðx2 � b2Þp00
n ðxÞ50; x 2 �

1

2
;
1

2

� �
;
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with b ¼ 1
2
n�

4
3; we have

jjgb � pnjj >
b
40

:

Proof. First we observe that p00
n ð
bÞ ¼ 0; and that p00

n ðxÞ40; for �b5x
5b: Assume that for some �b5x05b; p00

n ðx0Þ5� 1
4
: Then

j½p00
n ;�b; x0; b�j ¼

jp00
n ðx0Þj

ðb� x0Þðbþ x0Þ
>

1

4b2
:

Since

½p00
n ;�b; x0; b� ¼

1

2
pð4Þ
n ðyÞ;

for some �b5y5bð4 1
12
Þ; it follows by Bernstein’s inequality that

n4jjpnjj5
1

2
jpð4Þ

n ðyÞj >
1

4b2
:

Now by (3.1) and the prescribed value of b;

jjgb � pnjj5jjpnjj � jjgbjj >
1

4n4b2
�

2b
3

¼
4b
3
: ð3:2Þ

If on the other hand, p00
n ðxÞ5� 1

4
; for all �b5x5b; then we represent pn in

the form

pnðxÞ ¼ pnð0Þ þ xp0
nð0Þ þ

Z x

0

ðx� uÞp00
n ðuÞ du:

Since p00
n ðxÞ50 for b4jxj41

2
; it follows that

pn �
1

2

� �
� 2pnð0Þ þ pn

1

2

� �

¼
Z 1

2

0

1

2
� u

� �
p00
n ðuÞ duþ

Z �1
2

0

�
1

2
� u

� �
p00
n ðuÞ du

5
Z b

0

1

2
� u

� �
p00
n ðuÞ duþ

Z b

0

1

2
� u

� �
p00
n ð�uÞ du5�

b
4
:

Similarly,

gb �
1

2

� �
� 2gbð0Þ þ gb

1

2

� �
¼ 2

Z b

0

1

2
� u

� �
g00ðuÞ du

¼ �
8b
15

þ
b2

3
:
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Therefore,

4jjgb � pnjj5 pn �
1

2

� �
� gb �

1

2

� �� �
� 2ðpnð0Þ � gbð0ÞÞ

þ pn
1

2

� �
� gb

1

2

� �� �

5�
b
4
þ

8b
15

�
b2

3
5

b
10

:

Thus together with (3.2), this concludes the proof of Lemma 2. ]

As an immediate consequence we get

Corollary 1. For every constant A > 1 there exists an N ðAÞ sufficiently

large such that if n > N ðAÞ; then for any s52; there is a function g ¼ gn 2
C3½�1; 1�; which changes convexity s times in ½�1; 1�; and such that any

polynomial pn of degree 4n which is coconvex with it, satisfies

jjg� pnjj >
Ajjgð3Þjj
n3

;

jjg� pnjj >
Ajjg00jj
n2

;

and

jjg� pnjj >
Ajjg0jj
n

:

Proof. Let N ðAÞ ¼ ð80AÞ3 and let s52: We take b ¼ bn; n > N ðAÞ; as in
Lemma 2, and let g ¼ gb: The function g changes convexity at y2 ¼ �b and
y1 ¼ b; it is convex in ½y1; 1�; and if s > 2; then we take s� 2 arbitrary points
satisfying �15ys5 � � �5y35� 1

2; and regard g as changing convexity at
these points too, hence g 2 D2ðYsÞ: If the polynomial pn is coconvex with g;
then it satisfies the requirements of Lemma 2. Therefore, by Lemma 2 we
have

jjg� pnjj >
b
40

5
jjgð3Þjjb2

80
>
Ajjgð3Þjj
n3

;

jjg� pnjj >
b
40

¼
jjg00jjb

40
>
Ajjg00jj
n2

;

and

jjg� pnjj >
b
40

¼
3njjg0jj

64n
>
Ajjg0jj
n

: ]



COCONVEX APPROXIMATION 29
Remark. It should be noted that the function gb above is independent
of A:

We are ready to prove Theorem 1.

Proof of Theorem 1. The proof readily follows from the observation that
for all k51;

okðf ; tÞ42k�1oðf ; tÞ42k�1tjjf 0jj;

which by Corollary 1 does not allow the case r ¼ 0 in (2.3) and

okðf ; tÞ42k jjf jj;

which takes care of the other cases. ]

4. SOME AUXILIARY LEMMAS

We begin with two lemmas of independent interest which are needed only
in the proof of Theorem 4. We need the notation ½f ; z1; z2; z3� for the second
divided difference of f 2 C at the points z1; z2 and z3:

Lemma 3. Let E :¼ ½a; b� � ½0; 1� and set X 00
E :¼ w

E
; where w

E
is the

characteristic function of E. Then for every x0 2 ð0; 1Þ; we have

ðb� aÞ2

2
5½XE; 0; x0; 1�5b� a:

Proof. Recall that if a function f 2 C1½0; 1� has an absolutely continuous
first derivative, then its second divided difference possesses the well-known
representation

½f ; 0; x0; 1� ¼
Z 1

0

Z x

0

f 00ðx� ð1 � x0ÞyÞ dy dx:

Hence,

D :¼ ½XE; 0; x0; 1� ¼
Z 1

0

Z x

0

w
E
ðx� ð1 � x0ÞyÞ dy dx;

and we observe that, putting l :¼ ð1 � x0Þ
�1; D is the area of the set

A :¼ fðx; yÞ: a4x� l�1y4bg \ fðx; yÞ: 04y4x41g:
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Note that A is readily seen to be the intersection of the right-angle triangle
bounded by the x-axis and the lines y ¼ x and x ¼ 1; with the parallelogram
in the first quadrant, the basis of which is ½a; b�; the height 1, and the sides of
which are the lines y ¼ lðx� aÞ and y ¼ lðx� bÞ: The area of the
parallelogram is b� a; hence the upper estimate.

As for the lower bound, we observe that since l > 1; it follows that A
contains the right-angle triangle which is bounded by the x-axis and the lines
x ¼ b and y ¼ x� a; the area of which is exactly 1

2
ðb� aÞ2: The proof of the

lower estimate is therefore concluded. ]

Corollary 2. If E � ½0; 1� is a finite union of intervals, then

½XE; 0; x0; 1�5meas E ¼: jEj:

The second result is

Lemma 4. Let pk be a polynomial of degree not exceeding k and let a5b:
If

measfx 2 ½a; b�: p00
k ðxÞ40g5

b� a
16k3

;

then for every x0 2 ða; bÞ;

½pk; a; x0; b�50:

Proof. Without loss of generality, assume that a ¼ 0 and b ¼ 1:
If p00

k � 0; then there is nothing to prove, so we may assume that
jjp00

k jj½0;1� :¼ maxfjp00
k ðxÞj: 04x41g ¼ 1: Write

E2 :¼ fx 2 ½0; 1�: p00
k ðxÞ40g;

so that E2 is a finite union of intervals, and let x 2 E2 be arbitrary. Then there
is an x2 2 E2 such that jx� x2j4jE2j and p00

k ðx2Þ ¼ 0: By Markov’s inequality,

jp00
k ðxÞj ¼ jðx� x2Þp

ð3Þ
k ðyÞj4jE2j2k2jjp00

k jj½0;1�5
1

8k
;

so that

p00
k ðxÞ > �

1

8k
; x 2 E2: ð4:1Þ

Since we have assumed that jjp00
k jj½0;1� ¼ 1; this implies that there exists x1 2

½0; 1� such that p00
k ðx1Þ ¼ 1: We take an interval E1 � ½0; 1� of length jE1j ¼ 1

4k2

which contains x1: Then for each x 2 E1; it follows again by Markov’s
inequality that

jp00
k ðxÞ � p00

k ðx1Þj ¼ jðx� x1Þp
ð3Þ
k ðyÞj4jE1j2k2jjp00

k jj½0;1� ¼
1

2
;
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which in turn implies that

p00
k ðxÞ5

1

2
; x 2 E1: ð4:2Þ

Combining (4.1) and (4.2) we get

p00
k ðxÞ5

1

2
w
E1
�

1

8k
w
E2
; x 2 ½0; 1�:

By virtue of Lemma 3 and its corollary we obtain

½pk; 0; x0; 1�5
1

2

1

2
jE1j

2 �
1

8k
jE2j5

1

26k4
�

1

8k
1

16k3
> 0: ]

Now denote

rnðxÞ :¼
1

n2
þ

1

n

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � x2

p
¼

1

n2
þ

1

n
jðxÞ:

Throughout the paper we will have x and n as the generic variables, so
whenever it will be clear that we deal with them, then we will write r for
rnðxÞ: For each j ¼ 1; . . . ; n, set hj ¼ hj;n :¼ jIjj ¼ xj�1 � xj; where we recall
that xj :¼ xj;n :¼ cos pj=n are the Chebyshev nodes. Then the following
inequalities are well known (see, e.g., [10]):

r5hj55r; x 2 Ij;

hj
153hj;

r2
nðyÞ54rðjx� yj þ rÞ; x; y 2 I ;

ðjx� yj þ rÞ=25jx� yj þ rnðyÞ52ðjx� yj þ rÞ; x; y 2 I : ð4:3Þ

In particular,

ðjx� xjj þ hjÞ=105jx� xjj þ r52ðjx� xjj þ hjÞ;

x 2 I ; j ¼ 0; . . . ; n: ð4:4Þ

The next two lemmas are needed in the proofs of both Theorems 4 and 5.

Lemma 5. If 04j4i5J4n; then

1

2
ðJ � jÞ4

xj � xJ
xi � xiþ1

4ðJ � jÞ2: ð4:5Þ

Furthermore, if either J43j or n� j43ðn� J Þ; then

1

2
ðJ � jÞ4

xj � xJ
xi � xiþ1

42ðJ � jÞ: ð4:6Þ
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Proof. Let t :¼ p
2n: We begin with the upper bound and first assume that

2iþ 14J þ j: Then

xj � xJ
xi � xiþ1

¼
sinðJ þ jÞt sinðJ � jÞt

sinð2iþ 1Þt sin t

4
J þ j
2iþ 1

ðJ � jÞ

4
J þ j
2jþ 1

ðJ � jÞ4ðJ � jÞ2;

where we have used the fact that sin u=u is decreasing for 05u5p:
If on the other hand 2iþ 1 > J þ j; then we observe that xj � xJ ¼
xn�J � xn�j and xi � xiþ1 ¼ xn�i�1 � xn�i; and 2ðn� i� 1Þ þ 15ðn� J Þ þ
ðn� jÞ: Thus we obtain the same bound. This proves the upper bound
in (4.5). Further, if J43j; then clearly Jþj

2jþ1
42; so that the upper bound in

(4.6) follows. Similar considerations yield the upper bound in (4.6) when
n� j43ðn� J Þ:

As for the lower bound, we first assume that J4n
2
: Then

xj � xJ
xi � xiþ1

5
xj � xJ

xJ�1 � xJ

¼
sin 2Jt þ sin 2jt
2 sin ð2J � 1Þt

tanðJ � jÞt
sin t

5
1

2
ðJ � jÞ:

If j5n
2
; then we have the symmetric situation and the proof is the same.

We are left with the case j5n
2
5J : To this end we observe that if n

is even, then xn
2
� xn

2
þ1 ¼ xn

2
�1 � xn

2
5xi � xiþ1; j4i5J : Hence by the above

inequalities

xj � xJ
xi � xiþ1

¼
xj � xn

2


 �
þ xn

2
� xJ


 �
xi � xiþ1

5
xj � xn

2

xn
2
�1 � xn

2

þ
xn

2
� xJ

xn
2
� xn

2
þ1

5
1

2

n
2
� j


 �
þ J �

n
2


 �
 �
¼

1

2
ðJ � jÞ:
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If on the other hand n is odd, then the biggest denominator is
xn�1

2
� xnþ1

2
: Observe that xi;n ¼ x2i;2n so that by the inequality for the even

case we have

xj � xJ
xi � xiþ1

5
xj � xJ

xn�1
2

� xnþ1
2

¼
x2j;2n � x2J ;2n

xn�1;2n � xnþ1;2n

¼
ðxn�1;2n � xn;2nÞ þ ðxn;2n � xnþ1;2nÞ

x2j;2n � x2J ;2n

� ��1

5
2

2J � 2j
þ

2

2J � 2j

� ��1

¼
1

2
ðJ � jÞ: ]

Given Ys; s > 0; set

PðxÞ :¼
Ys
i¼1

ðx� yiÞ and dðxÞ :¼ sgn PðxÞ; x 2 I : ð4:7Þ

Let

pðxÞ :¼
Ys
i¼1

jx� yij
jx� yij þ r

; ð4:8Þ

then it follows immediately from (4.3) that

pðxÞ > 2�s; x 2 ð�1; 1Þ=O: ð4:9Þ

Now, by virtue of (4.4)

jx� yij þ r52jx� xjj þ jxj � yij þ 2hj;

and if j 2 H ; then 3jxj � yij5hj: Hence

hj
ðjx� xjj þ hjÞjxj � yij

4
7

jx� yij þ r
; j 2 H ;

which in turn implies

hj
jx� xjj þ hj

� �s jPðxÞj
jPðxjÞj

47spðxÞ; x 2 I ; j 2 H : ð4:10Þ

Similarly,

jx� xjj þ r
r

� �s jPðxÞj
jPðxjÞj

5pðxÞ; x 2 I ; j ¼ 0; . . . ; n: ð4:11Þ
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Following [12], let

tjðxÞ :¼ tj;nðxÞ :¼
cos2 2n arccos x

ðx� x0
j Þ

2
þ

sin2 2n arccos x

ðx� %xxjÞ
2

; ð4:12Þ

where %xxj ¼ cosðj� 1
2
Þp=n and x0

j ¼ cos b0
j with b0

j ¼ ðj� 1
4
Þp=n; j4n=2; and

b0
j ¼ ðj� 3

4
Þp=n; j > n=2: Note that %xxj and x0

j are zeros of the respective
numerators which are contained in I8j (the interior of Ij), and that the tj are
algebraic polynomials of degree 4n� 2: Recall that

tjðxÞ4
c

ðjx� xjj þ hjÞ
2
4ctjðxÞ; x 2 I : ð4:13Þ

With j 2 H and an integer b56ðsþ 1Þ; we associate the polynomial of degree
4Cn;

TjðxÞ ¼ Tj;nðx; b; YsÞ :¼
1

dj

Z x

�1

tbj ðuÞPðuÞ du; ð4:14Þ

where

dj ¼
Z 1

�1

tbj ðuÞPðuÞ du:

It follows by [5, Lemma 5.3] that

Ch2b�1
j 4

PðxjÞ
dj

4Ch2b�1
j ; ð4:15Þ

which clearly yields

T 0
j ðxÞPðxÞPðxjÞ50; x 2 I : ð4:16Þ

Denoting

GjðxÞ :¼
hj

jx� xjj þ hj
;

we obtain by (4.13) and (4.15),

jT 0
j ðxÞj4

C
hj

G2b
j ðxÞ

jPðxÞj
jPðxjÞj

4CjT 0
j ðxÞj; x 2 I : ð4:17Þ

Also by [5, Lemma 5.3], if

wjðxÞ :¼ wðxj;1�ðxÞ
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is the characteristic function of ðxj; 1�; then for j 2 H ;

jwjðxÞ � TjðxÞj4CG2b�s�1
j ðxÞ; x 2 I : ð4:18Þ

Similarly, the polynomials of degree 4Cn;

%TT jðxÞ ¼
1

%ddj

Z x

�1

ðu� xjÞðxj�1 � uÞtbþ1
j ðuÞPðuÞ du;

so that %TT jð1Þ ¼ 1; satisfy

%TT
0
jðxÞPðxÞPðxjÞ40; x 2 I =Ij;

and, in addition, they satisfy inequalities similar to (4.17) and (4.18),
namely,

j %TT
0
jðxÞj4

C
hj

G2b
j ðxÞ

jPðxÞj
jPðxjÞj

; x 2 I ;

and

jwjðxÞ � %TT jðxÞj4CG2b�s�1
j ðxÞ; x 2 I :

Then we obtain

Lemma 6. Let b ¼ 6ðsþ 1Þ: Then for each j 2 H there exist polynomials

tj and %ttj of degree 4cn; satisfying

t00j ðxÞPðxÞPðxjÞ50; x 2 I ;

%tt00j ðxÞPðxÞPðxjÞ40; x 2 I =Ij; ð4:19Þ

j%tt00j ðxÞj4
c
hj

G2b
j ðxÞ

jPðxÞj
jPðxjÞj

4cjt00j ðxÞj; x 2 I ; ð4:20Þ

and

jðx� xjÞþ � tjðxÞj4chjG2b�s�2
j ðxÞ;

jðx� xjÞþ � %ttjðxÞj4chjG2b�s�2
j ðxÞ; x 2 I : ð4:21Þ

Proof. We will prove only the existence of the polynomials tj; the other
case being completely analogous. For every j 2 H let Tj be defined by (4.14).
We use it to construct tj: By virtue of (4.18)Z 1

�1

jwjðxÞ � TjðxÞj dx4c
Z 1

�1

G2
j ðxÞ dx4 : c0hj; j 2 H : ð4:22Þ



LEVIATAN AND SHEVCHUK36
If for r :¼ d6c0 e (where dae denotes the ceiling of a), both j� r50 and
jþ r4n; and if for all j� r4i4jþ r; we have i 2 H ; then by Lemma 5 we
have

xj�r � xj53c0hj�r�15c0hj�r and xj � xjþr5c0hjþr;

so that it follows from (4.22) thatZ 1

�1

ðTj�rðxÞ � wjðxÞÞ dx ¼
Z 1

�1

ðTj�rðxÞ � wj�rðxÞÞ dx� ðxj�r � xjÞ40;

and Z 1

�1

ðTjþrðxÞ � wjðxÞÞ dx ¼
Z 1

�1

ðTjþrðxÞ � wjþrðxÞÞ dxþ ðxj � xjþrÞ50;

Hence for some 04a41; we have

a
Z 1

�1

ðTj�rðxÞ � wjðxÞÞ dxþ ð1 � aÞ
Z 1

�1

ðTjþrðxÞ � wjðxÞÞ dx ¼ 0:

We set

tj;n :¼ tjðxÞ :¼ a
Z x

�1

Tj�rðuÞ duþ ð1 � aÞ
Z x

�1

TjþrðuÞ du;

so that

tjð1Þ ¼ 1 � xj;

which by (4.18) in turn implies (4.21). Now (4.19) follows from (4.16) and
(4.20) follows from (4.17) since by our assumption sgn Pðxj�rÞ ¼ sgn PðxjþrÞ
¼ sgn PðxjÞ:

If j� r50; then it suffices to take

tjðxÞ :¼
Z x

�1

TjðuÞ du;

and if jþ r > n; then it suffices to take

tjðxÞ :¼ 1 � xj �
Z 1

x
TjðuÞ du:

We are left with the case where there is an i =2 H ; such that 04j� r4i5jþ
r4n: In this case we take the Chebyshev partition of order 2rn; so that we
have xj ¼ x2rj;2rn and i 2 H ðYs; 2rnÞ; for all 2rj� r4i42rjþ r: Thus we set

tjðxÞ :¼ t2rj;2rnðxÞ;

and we observe that by the above construction this tj satisfies (4.19)–(4.21),
since by virtue of (4.5),

h2rj;2rn4hj44r2h2rj;2rn: ]
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Remark. One should note that by going from n to 2rn; we may reduce all
cases save j ¼ 0 and j ¼ n; to the first situation.

The last four lemmas of this section are required in the proof of Theorem
5. Combining Lemma 6 with (4.3), (4.10) and (4.11) readily yields

Lemma 7. The polynomials tj and %ttj satisfy

jt00j ðxÞj5
chj
r2

pðxÞ
r

jx� xjj þ r

� �25ðsþ1Þ

; x 2 I ;

j%tt00j ðxÞj4
chj
r2

pðxÞ; x 2 Ij; ð4:23Þ

and

jðx� xjÞþ � tjðxÞj4cr
hj

jx� xjj þ r

� �2

;

jðx� xjÞþ � %ttjðxÞj4cr
hj

jx� xjj þ r

� �2

; x 2 I : ð4:24Þ

In order to prove Lemma 10 below, we need two more auxiliary results.

Lemma 8. Let l0; l1 2 N; and assume that 04j04j15 � � �5j2l1
4j0 þ

l04n: Then

1

l1

Xl1

n¼1

ðxjn � xjnþl1
Þ5

l1

l0

� �2

ðxj0
� xj0þl0

Þ: ð4:25Þ

Proof. With no loss of generality, we may assume that j04n� j0 � l0:
Then for each 14n4l1;

xjn � xjnþl1
5xjn � xjnþl1

5xj0
� xj0þl1

:

Thus, in order to prove (4.25), it suffices to estimate

xj0
� xj0þl1

xj0
� xj0þl0

¼
sin pl1=2n
sin pl0=2n

sin pð2j0 þ l1Þ=2n
sin pð2j0 þ l0Þ=2n

5
sin2 pl1=2n

sin2 pl0=2n
5

l1

l0

� �2

;

where in both inequalities we use the fact that l15l0 and in the last
inequality also that sin x=x is decreasing in ð0;pÞ: This completes the
proof. ]
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Lemma 9. Let A :¼ fj0; . . . ; j0 þ l0g and let A1;A2 � A be such that #A1

¼ 2l1 and #A2 ¼ l2: If dj 2 f�1; 1g; j 2 A2; then there exist 2l1 constants ai;
i 2 A1; such that

jaij4
l0

l1

� �2

; i 2 A1; ð4:26Þ

and
1

l2

X
j2A2

djðx� xjÞ þ
1

l1

X
i2A1

aiðx� xiÞ � 0: ð4:27Þ

Proof. Without loss of generality we may take l2 ¼ 1; that is, A2 ¼ fjng;
and we may assume djn ¼ �1: We may write A1 as A1 ¼ Aþ

1 [ A�
1 ; where

each set contains l1 elements, and each index in Aþ
1 is less than all indices in

A�
1 : Denote

1

l1

X
i2Aþ

1

ðx� xiÞ ¼: x� aþ and
1

l1

X
i2A�

1

ðx� xiÞ ¼: x� a�;

and put

ai :¼

xjn � a�

aþ � a�
; i 2 Aþ

1 ;

xjn � aþ

a� � aþ
; i 2 A�

1 :

8><
>:

Then (4.27) for l2 ¼ 1 follows. By virtue of Lemma 8 we have

aþ � a�5
l1

l0

� �2

ðxj0
� xj0þl0

Þ;

whence (4.26) follows by the straightforward inequality jxjn � a
j4xj0
�

xj0þl0
: This completes the proof of Lemma 9. ]

We are ready to state and prove Lemma 10.

Lemma 10. Let E be an interval which is the union of l512s of the

intervals Ij; and let a set J � E be the union of 14m4l=4 of these intervals.

Then there exists a polynomial QnðxÞ ¼ Qnðx;E; J Þ of degree 4cn; satisfying

Q00
nðxÞdðxÞ5c1

l
m

r
maxfr; distðx;EÞg

� �25ðsþ1ÞpðxÞ
r2

; x 2 J [ ðI =EÞ ð4:28Þ

(we may take c141),

Q00
nðxÞdðxÞ5�

pðxÞ
r2

; x 2 E=J ; ð4:29Þ
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and

jQnðxÞj4cl6r
X
Ij�E

hj
ðjx� xjj þ rÞ2

; x 2 I : ð4:30Þ

Proof. Let H ðEÞ :¼ fj 2 H j Ij � Eg; H ðJ Þ :¼ fj 2 H j Ij � Jg; EðOÞ :¼ fj j
Ij � E\ %OOg; and HnðEÞ :¼ fj 2 H ðEÞjIj \ %OO=|g; where %OO denotes the
closure of O: Finally, let jn :¼ minfj 2 H ðEÞg and jn :¼ maxfj 2 H ðEÞg: Set

A2 :¼ H ðJ Þ [ HnðEÞ [ fjn; jng and A1 :¼ H ðEÞ=ðA2 [ EðOÞÞ:

Denote by ln1 and l2 the number of elements in A1 and A2; respectively, and

set l1 :¼ ½l
n

1

2
�: Then it readily follows that

l24mþ 2sþ 24cm ð4:31Þ

(recall that we allow c to depend on s), and

l > ln15l� ðl2 þ 3sÞ5
1

6
l: ð4:32Þ

Denote by j0 and j0 ¼ j0 þ l� 1 the smallest and the largest integers j; such
that Ij � E: We consider three cases.

Case I: Let l5j0: Set

QnðxÞ :¼
l
m

X
j2A2

djtjðxÞ
hj

;

where dj :¼ sgn PðxjÞ: Then Q00
nðxÞdðxÞ50; x 2 I ; which implies (4.29), and

(4.28) readily follows from (4.23). Thus we only have to prove (4.30). To this
end, by (4.24) we obtain for any j 2 A2;

jtjðxÞj
hj

4
1

hj
jtjðxÞ � ðx� xjÞþj þ

ðx� xjÞþ
hj

4c
rhj

ðjx� xjj þ rÞ2
þ

ðx� xjÞþ
hj

:

Now, if x4xj; then ðx� xjÞþ ¼ 0: Otherwise, observe that x 2 Ii for some
14i4j42l: Thus,

ðx� xjÞ
hj

ðx� xj þ rÞ2

rhj
410

x� xj
hj

x� xj þ hj
hj

x� xj þ hi
hi

410
x0 � x2l

h1
þ 1

� �3

4cl6

which implies (4.30).
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Case II: Let j05n� 2l: Set

QnðxÞ :¼
l
m

X
j2A2

dj
hj

ðtjðxÞ � ðx� xjÞÞ;

and proceed in the same manner as in Case I.
Case III: Let l5j05n� 2l: Denote by h ¼ jEj ¼ xj0�1 � xj0þl�1; the

length of the interval E: Then (4.6) implies

1

2
h4lhj42h; Ij � E: ð4:33Þ

Lemma 9, (4.31) and (4.32) guarantee the existence of ai; i 2 A1; such that

l
m

X
j2A2

djðx� xjÞ þ
X
i2A1

aiðx� xiÞ � 0 ð4:34Þ

and

jaij4
l
m

l
l1

� �2l2

l1
4c; i 2 A1: ð4:35Þ

(Note that if ln1 is odd, then we apply Lemma 9 to A1=fing; for some
arbitrary in; and put ain ¼ 0 in (4.34).)

For each i 2 A1 set

tni :¼
ti; if diai50;

%tti; otherwise;

(

and let

QnðxÞ :¼ c
l
h

l
m

X
j2A2

djtjðxÞ þ
X
i2A1

aitni ðxÞ

 !
;

for some c to be prescribed. Then by virtue of (4.33) and (4.35), we
see that (4.28) readily follows by (4.19) and (4.23), and that (4.29) is valid for
a proper choice of the constant c: We conclude with the proof of (4.30).
Take

LðxÞ :¼
l
m

X
j2A2

djðx� xjÞþ þ
X
i2A1

aiðx� xiÞþ:

Then by (4.24) we have

jQnðxÞj4clr
X
j2H ðEÞ

hj
ðjx� xjj þ rÞ2

þ c
l
h
jLðxÞj; x 2 I :
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So we only need to estimate l
h jLðxÞj: To this end, note that if x =2 E; then (4.34)

implies that LðxÞ � 0: On the other hand, if x 2 E; then

l
h
jLðxÞj4

cl
h

ll2

m
hþ 2l1h

� �
4cl24cl3 r

X
Ij�E

hj
ðjx� xjj þ rÞ2

;

where for the last inequality we have applied (4.3), (4.33) and the
estimate

1 ¼ h
X
Ij�E

hj
h2
416h

X
Ij�E

hj
ðjx� xjj þ rÞ2

4160lr
X
Ij�E

hj
ðjx� xjj þ rÞ2

:

This completes the proof of (4.30), and in turn of Lemma 10. ]

5. PROOF OF THEOREMS 2 AND 4

We begin with the

Proof of Theorem 4. Since Theorem 4 for k ¼ 1 is trivial, we have to
prove Theorem 4 only for k52: Given n51; denote by Gn ¼ ðxJn ; xjn Þ the
connected components of O ¼ Oðn; YsÞ: For j ¼ 1; . . . ; n� 1; let *ttj be
polynomials of degree 4cn defined as follows:

(a) If j 2 H ; then

*ttjðxÞ :¼ tjðxÞ;

where tj are from Lemma 6.
(b) If jn ¼ 0 and 05j5Jn; then *ttjðxÞ :¼ 0:
(c) If Jn ¼ n and jn5j5n; then *ttjðxÞ :¼ x� xj:
Finally, we have the j’s for which 05jn5j5Jn5n: We divide the n’s into

two groups. Let n1 :¼ 16sðk � 1Þ3n: We say that n 2 Od if there exists an
ln 2 H ðn1; YsÞ such that Iln;n1

\ Gn=|; and the interval ðxln;n1
; xjn;nÞ contains an

odd number of points yi: Note that if n =2 Od ; then the set Gn contains an
even number, say 2m; of points yi; the points yi0þ2m�15 � � �5yi0 ; say. In this
case each two consecutive points yi0þ2v and yi0þ2vþ1; v ¼ 0; . . . ;m� 1; must
belong to the union of four consecutive intervals, say ½xlvþ2;n1

; xlv�2;n1
Þ;

whence

fx 2 Gn: Pðxjn ÞS
00ðxÞ50g �

[m�1

v¼0

½xlvþ2;n1
xlv�2;n1

�:
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It follows by the left-hand side of (4.5) that

measfx 2 Gn: Pðxjn ÞS
00ðxÞ50g4

s
2

4 max
Il;n1

�ðxJn ;xjn Þ
jIl;n1

j

4
4s
2

2
jGnj

ðJn � jnÞ n1

n

44s
jGnj
4 n1

n

¼
1

16ðk � 1Þ3
jGnj: ð5:1Þ

We need the polynomials tjn and tJn ; however, we note that jn might not be
in H : Since 2jn is always in H ð2n; YsÞ; in the case jn =2 H ; we define *ttjn :¼ tjn :¼
t2jn;2n: Similarly, we always have Jn =2 H and 2Jn 2 H ð2n; YsÞ; so we define
*ttJn :¼ tJn :¼ t2Jn;2n:

(d) If 05jn5j5Jn5n and n =2 Od ; then we let

*ttjðxÞ :¼ tjn ðxÞ:

If on the other hand,
(e) 05jn5j5Jn5n and n 2 Od; then we let

*ttjðxÞ :¼ djtjn ðxÞ þ ð1 � djÞtln;n1
ðxÞ;

where dj ¼ 0 or 1 is to be prescribed.
We are in a position to define Pn: Recall that the piecewise linear function

L that interpolates S; at the xj’s, satisfies

jjS � Ljj4coj
2 S;

1

n

� �
; ð5:2Þ

and may be written in the form

LðxÞ ¼ lðxÞ þ
Xn�1

j¼1

½S; xjþ1; xj; xj�1�ðxj�1 � xjþ1Þðx� xjÞþ;

where lðxÞ is a linear function. Thus, denote

PnðxÞ :¼ lðxÞ þ
Xn�1

j¼1

½S; xjþ1; xj; xj�1�ðxj�1 � xjþ1Þ*ttjðxÞ:
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We begin with the proof of (2.6). To this end, we show that for each j ¼
1; . . . ; n� 1; we have

jðx� xjÞþ � *ttjðxÞj4chjG2
j ðxÞ; x 2 I : ð5:3Þ

Indeed, going through the various cases we see that:

(a) (5.3) readily follows from (4.21);
(b,c) (5.3) readily follows from the inequalities

hj4jGnj5chj; jn5j5Jn; ð5:4Þ

(d) by (4.21) and (5.4),

jðx� xjÞþ � *ttjðxÞj4jðx� xjÞþ � ðx� xjn Þþj þ jðx� xjn Þþ � *ttjn ðxÞj

4chjG2
j ðxÞ þ chjnG

2
jn ðxÞ4chjG2

j ðxÞ;

and finally,
(e) if dj ¼ 1; then we are back to Case (d), and if dj ¼ 0; then similarly

we have

jðx� xjÞþ � *ttjðxÞj4chjG2
j ðxÞ þ jðx� xln;n1

Þþ � *ttln;n1
ðxÞj

4chjG2
j ðxÞ þ

h3
ln;n1

ðjx� xln;n1
j þ hln ;n1

Þ2

4chjG2
j ðxÞ;

and (5.3) is proved. Since it is well known that

j½S; xjþ1; xj; xj�1�j4ch�2
j oj

2 S;
1

n

� �
; j ¼ 1; . . . ; n� 1;

and

Xn
j¼1

G2
j

�����
�����

�����
�����4c;

we obtain

jjL� Pnjj4c
Xn�1

j¼1

G2
j

�����
�����

�����
�����oj

2 S;
1

n

� �
:

This together with (5.2) concludes the proof of (2.6).
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In order to prove that Pn 2 D2ðYsÞ we denote

LjðxÞ :¼ ½S; xjþ1; xj; xj�1�ðxj�1 � xjþ1Þ*ttjðxÞ; j ¼ 1; . . . ; n� 1;

and

PnðxÞ ¼: lðxÞ þ AðxÞ þ BðxÞ þ CðxÞ þ DðxÞ þ EðxÞ;

where

AðxÞ ¼
X
j2H

LjðxÞ þ
X
Jn5n

LJn ðxÞ;

BðxÞ ¼
XJn�1

j¼1

LjðxÞ; if jn ¼ 0;

CðxÞ ¼
Xn�1

j¼jnþ1

LjðxÞ; if Jn ¼ n;

DðxÞ ¼
X
n2Od

XJn�1

j¼jnþ1

LjðxÞ;

and

EðxÞ ¼
X
n =2 Od

XJn�1

j¼jnþ1

LjðxÞ ¼:
X
n =2 Od

EnðxÞ:

It is important to emphasize that we either have jn 2 H or jn ¼ Jnþ1; so that
indeed all 14j4n� 1 are taken care of.

Again we have to investigate each case separately.

(a) If j 2 H ; then by definition of D2ðYsÞ we have, PðxjÞ½S; xjþ1; xj; xj�1�
50: Hence by (4.19),

PðxÞL00j ðxÞ ¼ PðxÞ½S; xjþ1; xj; xj�1�ðxj�1 � xjþ1Þt00j ðxÞ50;

and similarly PðxÞL00Jn ðxÞ50; Jn5n; so that PðxÞA00ðxÞ50; x 2 I :
(b, c) Since B and C are linear functions, we have B00ðxÞ � 0 and

C00ðxÞ � 0:
(e) If n 2 Od; then by definition, we have an odd number of points

yi 2 ðxln;n1
; xjn Þ; which in turn implies that

Pðxln ;n1
ÞPðxjn Þ50:

Hence, (4.19) implies

t00ln;n1
ðxÞt00jn ðxÞ40; x 2 I :
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Hence for each j ¼ jn þ 1; . . . ; Jn � 1; we may prescribe dj so that

PðxÞL00j ðxÞ50; x 2 I :

With this choice

PðxÞD00ðxÞ50; x 2 I :

Finally we conclude with the proof of Case (d).
(d) If n =2 Od ; then

EnðxÞ ¼
XJn�1

j¼jnþ1

LjðxÞ

¼ tjn ðxÞ
XJn�1

j¼jnþ1

½S; xjþ1; xj; xj�1�ðxj�1 � xjþ1Þ

¼ tjn ðxÞð½S; xJn ; xjnþ1; xjn �ðxjnþ1 � xJn Þ þ ½S; xJn ; xJn�1; xjn �ðxjn � xJn�1ÞÞ

¼: tjn ðxÞen:

By virtue of Lemma 4 and (5.1), it now follows that

Pðxjn Þen50:

Therefore, (4.19) implies

PðxÞE00
n ðxÞ ¼ t00jn ðxÞPðxÞPðxjn Þ

en
Pðxjn Þ

50; x 2 I :

Since l00ðxÞ � 0; we have shown that Pn 2 D2ðYsÞ; and concluded the proof of
Theorem 4. ]

Proof of Theorem 2. Analyzing the above proof, one notes that the only
place one needs the assumption that our function is a piecewise polynomial,
is in order to apply Lemma 4. Thus for a general f 2 D2ðYsÞ; if one is
guaranteed that n is sufficiently big so that each component Gn contains an
odd number of points of Ys; in particular one point, then one may conclude
the same. If f changes convexity just once, then obviously the requirement
that each component Gn contains an odd number of points of Ys; specifically
one point, holds for all n51: This proves Theorem 2. ]

Remark. In view of the above discussion we see that we always have
estimate (2.4) for n5N ¼ N ðYsÞ: This is of course weaker than (2.1) and we
only mention it since we have got it for free.
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6. SMOOTHING LEMMAS

Let Ii;j be the smallest closed interval, containing Ii and Ij; and denote
hi;j :¼ jIi;jj: For S 2 Sk;n set

ai;jðSÞ :¼ jjpi � pjjjIi
hj
hi;j

� �k

; i; j ¼ 1; . . . ; n; ð6:1Þ

where jjpjjIi ¼ maxfjpðxÞj: x 2 Iig:
We are going to call an interval A a proper interval if its endpoints belong

to the Chebyshev partition, that is, are among the xj’s. For any proper
interval A; let

akðS;AÞ :¼ max ai;jðSÞ;

where the maximum is taken over all i; j; such that Ij � A and Ii � A: Finally,
write

akðSÞ :¼ akðS; IÞ:

Then, by virtue of [10, Lemma 9] we have

akðSÞ4coj
k S;

1

n

� �
4cakðSÞ: ð6:2Þ

Given x 2 I ; if y 2 ½x� hjðxÞ; xþ hjðxÞ� � I ; then we have jðxÞ42ðhþ jðyÞÞ:
If S 2 S1

k;n; S
0 is absolutely continuous in I ; whence for 05h41=n;

jD2
hjðxÞSðxÞj ¼

Z xþhjðxÞ

x
ðS0ðtÞ � S0ðt � hjðxÞÞ dt

����
����

¼
Z xþhjðxÞ

x

Z t

t�hjðxÞ
S00ðuÞ du dt

����
����

4
1

minðh2 þ hjðyÞÞ2

Z xþhjðxÞ

x

Z t

t�hjðxÞ
r2
nðuÞS

00ðuÞ du dt

����
����

4
ðhjðxÞÞ2

minðh2 þ hjðyÞÞ2
jjr2S00jj1

4 4jjr2S00jj;

where the minimum is taken above on y 2 ½x� hjðxÞ; xþ hjðxÞ�: Hence, if
S 2 S1

k;n; then

oj
2 S;

1

n

� �
4cjjr2S00jj; ð6:3Þ
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which in turn by (6.2), and the inequality oj
k ðS; tÞ4coj

2 ðS; tÞ; k53; readily
implies

Lemma 11. If S 2 S1
k;n; then

akðSÞ4 cjjr2S00jj:

Finally we have

Lemma 12. Suppose k53 and S 2 S1
k;n is such that

akðSÞ41: ð6:4Þ

If an interval Im;n contains at least 2k � 5 intervals Ii; and points xni 2 I8i; such

that

r2
nðx

n

i ÞjS
00ðxni Þj41; ð6:5Þ

then for every 04j4n; we have

jjr2S00jjIj4cððj� mÞ4k þ ðj� nÞ4kÞ: ð6:6Þ

Proof. Fix j and x 2 (II j: It follows by (6.1) and (6.4) that for
every i;

jjpi � pjjjIi4
hi;j
hj

� �k

:

Since pi and pj are polynomials of degree k � 1; we get

jjp00
i � p00

j jjIi4
c
h2
i

hi;j
hj

� �k

:

In view of (4.3) and (4.5), we see that (6.5) implies

jp00
j ðx

n

i Þj4
c
h2
i

hi;j
hj

� �k

þ
c
h2
i

4
c
h2
i

hi;j
hj

� �k

4
c
h2
j
ðji� jj þ 1Þ2k : ð6:7Þ

By assumption there are k � 2 points xnim 2 Im;n; m ¼ 1; . . . ; k � 2; each two
being separated by an interval Ii � Im;n: Recalling that x 2 Ij; we have for
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each 14l4k � 2 and 14m4k � 2; with l=m;
jx� xnim j

jxnil � xnim j
4c

hj;im
him

4cðjj� imj þ 1Þ24cððj� mÞ2 þ ðj� nÞ2Þ: ð6:8Þ

Now, by virtue of the representation

p00
j ðxÞ �

Xk�2

l¼1

p00
j ðx

n

ilÞ
Yk�2

m¼1;m=l

x� xnim
xnil � xnim

;

we obtain from (6.7) and (6.8),

r2jS00ðxÞj ¼ r2jp00
j ðxÞj4h2

j jp
00
j ðxÞj4c ðj� mÞ4k�6 þ ðj� nÞ4k�6

� �
;

x 2 (II j;

and the proof is complete. ]

7. ZERO-PRESERVING APPROXIMATION

We begin with a technical result. Namely,

Lemma 13. For s 2 N; let 2s vectors %aal ¼ ða0;l; a1;l; . . . ; as�1;lÞ; l ¼ 0; . . . ;
2s � 1; be given so that sgn an;l ¼ ð�1Þdn;l ; 04n4s� 1; where dn;l 2 f0; 1g is

from the representation l ¼
Ps�1

n¼0 dn;l2n: Then there are 2s positive numbers al
such that

X2s�1

l¼0

al %aal ¼ ð0; 0; . . . ; 0Þ: ð7:1Þ

Proof. The proof by induction is straightforward. ]

Next we need

Lemma 14. Let KðxÞ be a continuous strictly positive function on I, and let

04in4s be fixed. Then there exist s interlacing points yiþ15ti5yi; i ¼ 0;
. . . ; s; i=in; such that the function

FðxÞ ¼ Fðx;K; in; YsÞ :¼
Z x

�1

KðuÞP2ðuÞ
Ys

i¼0;i=in
ðu� tiÞ du ð7:2Þ

(if s ¼ 0; then the empty product ¼ 1) satisfies

F0ðyiÞ ¼ F00ðyiÞ ¼ 0; 14i4s; ð7:3Þ
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and

FðyiÞ ¼
Fð1Þ; 04i4in;

Fð�1Þ; in5i4sþ 1:

(
ð7:4Þ

Proof. Since (7.3) is self-evident for any choice of ftig; we prove that we
may select them so as to yield (7.4). For each 04l42s � 1 and every 04i
4s; i=in; we take yi;l 2 fyi; yiþ1g; such that for u 2 ðyiþ1; yiÞ;

sgn ðPðuÞðu� yinÞðu� yi;lÞÞ ¼
ð�1Þdi;l ; i5in;

ð�1Þdi�1;l ; i > in;

(

and denote

FlðxÞ :¼
Z x

�1

KðuÞP2ðuÞ
Ys

i¼0;i=in
ðu� yi;lÞ du:

Now, for

ai;l :¼
FlðyiÞ � Flðyiþ1Þ; i5in;

Flðyiþ1Þ � Flðyiþ2Þ; i5in;

(
ð7:5Þ

it follows that sgn ai;l ¼ ð�1Þdi;l ; therefore by Lemma 13 there are 2s positive
numbers al such that

X2s�1

l¼0

alða0;l; a1;l; ; . . . ; as�1;lÞ ¼ ð0; 0; . . . ; 0Þ:

Set

FðxÞ :¼
X2s�1

l¼0

al

 !�1X2s�1

l¼0

alFlðxÞ: ð7:6Þ

Then F is the required function. Indeed, for each 04i5in; we have

X2s�1

l¼0

alðFlðyiþ1Þ � FlðyiÞÞ ¼
X2s�1

l¼0

alai;l ¼ 0;

which implies (7.4) for 04i4in: Similarly we have (7.4) for in5i4sþ 1: By
its definition,

FðxÞ :¼
Z x

�1

KðuÞP2ðuÞPsðuÞ du; ð7:7Þ
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where PsðxÞ is a monic polynomial of degree s: By Rolle’s theorem (7.4)
implies that F0ðxÞ has a zero in ðyiþ1; yiÞ; 04i4s; i=in: Hence by (7.7), FðxÞ
possesses the representation (7.2). ]

Let j 2 H and let 04ij4s be such that yijþ15xj5yij : For a fixed integer
b56ð3sþ 1Þ; denote

$TT jðxÞ :¼ $TT j;nðx; b; YsÞ :¼ d�1
j;b;Ys;nFðx; t

b
j ; ij; YsÞ; ð7:8Þ

where tj was defined in (4.12) and where dj;b;Ys;n is chosen so that $TT jð1Þ ¼ 1:
Evidently, it is a polynomial of degree 4Cn: A proof similar to that of (4.18)
yields

jwjðxÞ � $TT jðxÞj4C
hj

jx� xjj þ hj

� �b1

; x 2 I ; ð7:9Þ

where b1 ¼ 2b� 3s� 1:
For the rest of this section we assume that s > 0; otherwise many

of the statements are vacuous and there is nothing to prove. For
j =2 H ; let jn be the closest element to it from H (if there are two
such elements, then we take the bigger one), and denote by Inj the
connected component of %OO (the closure of O), that contains xj:
Since the interval Inj contains at most 3s intervals In; we conclude from
(4.5) that

hj4jInj j4ð3sÞ2hj: ð7:10Þ

In order to use a unified notation we denote for j 2 H ; jn :¼ j; and Inj :¼ Ij: It
follows by (7.10) that (7.9) is valid also for the polynomial

$TT jðxÞ :¼ $TT j;nðx; b; YsÞ :¼ $TT jn ;nðx; b; YsÞ; j =2 H : ð7:11Þ

We summarize the above in the following:

Lemma 15. For every 14j4n;

$TT
0
jðyiÞ ¼ $TT

00
j ðyiÞ ¼ 0; 14i4s; ð7:12Þ

wjðyiÞ � $TT jðyiÞ ¼ 0; 14i4s; yi =2 Inj ; ð7:13Þ
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and

jwjðxÞ � $TT jðxÞj5C
hj

jx� xjj þ hj

� �b1

; x 2 I : ð7:14Þ

Set

#TT1ðxÞ ¼ #TT1;nðx; b; YsÞ :¼ $TT1;nðx; b; YsÞ;

#TTnðxÞ ¼ #TTn;nðx; b; YsÞ :¼ 1 � $TTn�1;nðx; b; YsÞ;

#TT jðxÞ ¼ #TT j;nðx; b; YsÞ :¼ $TT j;nðx; b; YsÞ � $TT j�1;nðx; b; YsÞ; 24j4n� 1: ð7:15Þ

Then we prove

Lemma 16. The following relations hold:

Xn
j¼1

#TT jðxÞ � 1; ð7:16Þ

#TT
0
jðyiÞ ¼ #TT

00
j ðyiÞ ¼ 0; 14i4s; 14j4n;

#TT jðyiÞ ¼ 0; 14i4s; 14j4n; yi =2 Inj ; ð7:17Þ

and

j #TT
ðqÞ
j ðxÞj5

C
rq

hj
jx� xjj þ hj

� �b1

; x 2 I ; 14j4n; 04q4sþ 2: ð7:18Þ

Proof. Obviously, (7.16) is self-evident, and (7.17) and (7.18) with q ¼ 0
readily follow by (7.12)–(7.14). One can deduce (7.18) for q > 0 from the case
q ¼ 0 in the standard way, using Dzyadyk’s inequality (see, e.g., [4, p. 262];
see also [12, p. 118])

jjraþ1P 0
njj4d jjraPnjj;

where d ¼ dðaÞ is independent of n: ]

Now let n1 be divisible by n and for every 14j4n; denote

*TT j;n1
ðxÞ ¼ *TT j;n1

ðx; b; YsÞ :¼
X

In;n1
�Ij

#TT n;n1
ðx; b; YsÞ:

Clearly it is a polynomial of degree 4Cn1: We have



LEVIATAN AND SHEVCHUK52
Lemma 17. The following relations hold:

Xn
j¼1

*TT j;n1
ðxÞ � 1; ð7:19Þ

*TT
0
j;n1

ðyiÞ ¼ *TT
00
j;n1

ðyiÞ ¼ 0; 14i4s; 14j4n;

*TT j;n1
ðyiÞ ¼ 0; 14i4s; 14j4n; yi =2 Inj ; ð7:20Þ

and

j *TT
ðqÞ
j;n1

ðxÞj4
C

rn1
ðxÞq

rn1
ðxÞ

rn1
ðxÞ þ distðx; IjÞ

� �b2

;

x 2 I ; 14j4n; 04q4sþ 2; ð7:21Þ

where b2 ¼ 1
2
ðb1 � 1Þ:

Proof. Relations (7.19) and (7.20) follow immediately from (7.16) and
(7.17), when we observe that if In;n1

� Ij; then Inn;n1
� Inj : Thus we just have to

prove (7.21). Note that (4.3) and (4.4) yield

hn;n1

jx� xn;n1
j þ hn;n1

� �2

4c
rn1

ðxÞ
jx� xn;n1

j þ rn1
ðxÞ

:

Now if x5xj; then it follows by (7.18) that

rq1j *TT
ðqÞ
j;n1

ðxÞj4C
X
In;n1

�Ij

hn;n1

jx� xn;n1
j þ hn;n1

� �b1

4Crb2
n1
ðxÞ

X
In;n1

�Ij

hn;n1

ðjx� xn;n1
j þ rn1

ðxÞÞb2þ1

4Crn1
ðxÞb2

Z 1

xj�x

du

ðuþ rn1
ðxÞÞb2þ1

¼ C
rn1

ðxÞ
rn1

ðxÞ þ xj � x

� �b2

¼ C
rn1

ðxÞ
rn1

ðxÞ þ distðx; IjÞ

� �b2

:

Similar proofs yield (7.21) if xj�15x; and if x 2 Ij: ]
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Let S 2 Sk;n; take n1 divisible by n and set

Dn1
ðxÞ :¼ Dn1

ðx; SÞ :¼
Xn1

j¼1

pjðxÞ *TT j;n1
ðx; b; YsÞ; ð7:22Þ

evidently a polynomial of degree 4Cn1: Finally, denote

Oe :¼ fu 2 %OO: ½u� 1
2
rnðuÞ; uþ

1
2
rnðuÞ� � %OOg [ ð %OO \ ðI1 [ InÞÞ:

Recall that A is a proper interval if its endpoints belong to the Chebyshev
partition. We have

Lemma 18. Let b3 ¼ b2 � s� 2k � 6 > 0; and let A be a proper interval.

For S 2 Sk;nðYsÞ;

jSðqÞðxÞ � DðqÞ
n1
ðxÞj4

C
rq

akðS;AÞ þ akðSÞ
n
n1

r

rþ distðx; I =AÞ

� �b3

 !
;

x 2 A\ %OOe; q ¼ 0; . . . ; sþ 2: ð7:23Þ

Furthermore, if S 2 S1
k;n; then for x=xj; 04j4n;

jS00ðxÞ � D00
n1
ðxÞj4

C
r2

akðS;AÞ þ akðSÞ
n
n1

r

distðx; I =AÞ

� �b3

 !
;

x 2 A: ð7:24Þ

Proof. The proof of the two statements is similar and we will
proceed simultaneously in both. Fix In � A\ %OO (or simply In � A;
if we prove (7.24)), and let x 2 In \ %OOe (or simply x 2 In) be such that,
say,

x� xn4xn�1 � x: ð7:25Þ

For the sake of brevity, we will write in this proof r1 for rn1
ðxÞ; *TT j for *TT j;n1

;
and an;j for an;jðSÞ: By (6.1),

jjpn � pjjjIn ¼ an;j
hn;j
hj

� �k

;

whence, for each r 2 N;

jjpðrÞ
n � pðrÞ

j jjIn4
can;j
hrn

hn;j
hj

� �k

:
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First let j=n; nþ 1: Then (4.3) and (7.25) imply distðx; IjÞ > 1
2
r: Hence (7.21)

combined with (4.3) and (4.4) yields

jjpðrÞ
n � pðrÞ

j jjIn j *TT
ðq�rÞ
j ðxÞj

4
Can;j
hrn

hn;j
hj

� �k
1

rq�r
1

r1

r1 þ distðx; IjÞ

� �b2

4
Can;j
hrn

hn;j
hj

� �kþ1 hj
hn;j

1

rq�r
1

r1

r1 þ distðx; IjÞ

� �b2

4
Can;j
hrn

rþ distðx; IjÞ
r

� �2ðkþ1Þhj
hn

1

rq�r
1

r1

r1 þ distðx; IjÞ

� �q�rþ1

�
r

rþ distðx; IjÞ

� �b2�qþr�1

4
Can;j
hrþ1
n

hj
r1

r
1

rq�r

r
rþ distðx; IjÞ

� �b3þ1

4
Can;j
rq

n
n1

rb3hj
1

rþ distðx; IjÞ

� �b3þ1

; 04r4q; ð7:26Þ

where in the third inequality we applied the third inequality in (4.3) and
(4.4), in the next one we used the fact that distðx; IjÞ > 1

2
r; and in the last we

have applied the straightforward inequality

r1

r
4

n
n1
:

Now, by virtue of (7.19) we may represent SðqÞðxÞ � DðqÞ
n1
ðxÞ as

SðqÞðxÞ � DðqÞ
n1
ðxÞ ¼ ððpnðxÞ � pnþ1ðxÞÞ *TTnþ1ðxÞÞ

ðqÞ

þ
X

Ij�A;j=n;nþ1

þ
X

Ij 6�A;j=n;nþ1

0
@

1
AððpnðxÞ � pjðxÞÞ *TT jðxÞÞ

ðqÞ

¼: s1ðxÞ þ s2ðxÞ þ s3ðxÞ;

where we write pnþ1 :¼ pn; if n ¼ n:
We begin with the estimate of s1: Note that if n ¼ n; then s1 � 0; so that

we may assume that n5n: We need separate arguments for (7.23) and (7.24).
First we deal with (7.24). Since S 2 S1

k;n; q ¼ 2; and In � A; it readily
follows that

jjp00
n � p00

nþ1jjIn4
c
r2
an;nþ1;
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which in turn implies

jp0
nðxÞ � p0

nþ1ðxÞj ¼
Z x

xn

ðp00
n � p00

nþ1Þ du

����
����4 c

r2
an;nþ1ðx� xnÞ

and

jpnðxÞ � pnþ1ðxÞj4
c
r2

an;nþ1ðx� xnÞ
2:

Therefore, by (7.21)

js1ðxÞj4
c
r2

an;nþ1 1 þ
x� xn
r1

þ
ðx� xnÞ

2

r2
1

� �
r1

r1 þ jx� xnj

� �b2

4
c
r2

an;nþ1
r1

r1 þ jx� xnj

� �b2�2

: ð7:27Þ

Now, if Inþ1 � A; then (7.27) implies

js1ðxÞj4
C
r2

akðS;AÞ; ð7:28Þ

and if Inþ1 6� A; then (7.27) yields

js1ðxÞj4
C
r2

akðSÞ
r1

r
r

r1 þ jx� xnj
r1

r1 þ jx� xnj

� �b2�3

4
C
r2

akðSÞ
n
n1

r
jx� xnj

r
rþ jx� xnj

� �b2�3

4
C
r2

akðSÞ
n
n1

r

distðx; I =AÞ

� �b3

: ð7:29Þ

Now we establish (7.23). Since x 2 %OOe; n =2 H : If also ðnþ 1Þ =2 H ; then S 2
Sk;nðYsÞ implies pn � pnþ1: Hence s1 ¼ 0: Otherwise, ðnþ 1Þ 2 H ; so that
x 2 %OOe implies x� xn5r: Therefore (7.26) holds for j ¼ nþ 1; and we may
absorb s1 either in s2 or in s3; as the case may be, and which we estimate
below.

What is left is to estimate s2 and s3: It follows from (7.26) that

js3ðxÞj4
CakðSÞ
rq

n
n1
rb3

X
Ij 6�A;j=n;nþ1

hj
ðrþ distðx; IjÞÞ

b3þ1
;

4
CakðSÞ
rq

n
n1

r

rþ distðx; I =AÞ

� �b3

: ð7:30Þ



LEVIATAN AND SHEVCHUK56
Similarly, if distðx; IvnÞ :¼ minfdistðx; In�1Þ;distðx; Inþ2Þg; then we obtain

js2ðxÞj4
CakðS;AÞ

rq
n
n1

r
rþ distðx; InnÞ

� �b3

4
CakðS;AÞ

rq
: ð7:31Þ

Thus (7.23) follows by combining (7.30) and (7.31) with the above
discussion of s1; and (7.24) is obtained by combining (7.28)–(7.31). This
completes the proof. ]

The following result is almost trivial.

Lemma 19. If S 2 Sk;n; then

jjS � Dn1
jj4CakðSÞ: ð7:32Þ

Moreover, if S 2 Sk;nðYsÞ and

S00ðyiÞ ¼ 0; i ¼ 1; . . . ; s; ð7:33Þ

then

D00
n1
ðyiÞ ¼ 0; i ¼ 1; . . . ; s: ð7:34Þ

Proof. The proof of (7.32) is similar to that of (7.24), in fact easier, so we
only prove (7.34).

To this end fix 14i4s; and let n be such that yi 2 In: Since pj � pn; for all
Ij � Inn ; then

D00
n1
ðyiÞ ¼

Xn
j¼1

ðpjðyiÞ *TT
00
j ðyiÞ þ p0

jðyiÞ *TT
0
jðyiÞÞ þ

X
Ij 6� Inn

p00
j ðyiÞ *TT jðyiÞ

þ p00
n ðyiÞ

X
Ij�Inn

*TT jðyiÞ:

Now, by virtue of (7.20), the first and the second sums are zero, and since
p00
n ðyiÞ ¼ S00ðyiÞ ¼ 0; it follows that the third term vanishes. ].

Finally we have

Lemma 20. If A is a proper interval, S 2 S1
k;nðYsÞ; and (7.33) holds,

then

jS00ðxÞ � D00
n1
ðxÞj4

C0pðxÞ
r2

akðS;AÞ þ akðSÞ
n
n1

r

distðx; I =AÞ

� �b3

 !
;

x 2 A; ð7:35Þ

where C0 ¼ C0ðk; s; bÞ; and recall that pðxÞ is from (4.8).
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Proof. Let x 2 A: First observe that if x =2 %OOe; then pðxÞ > c: Indeed, if
x =2 %OO; then it follows from (4.9), and we only have to check the case where x
is in a connected component, say ½xm; xn�; of %OO and either xþ r=2 > xn and
n > 0; or x� r=25xm and m5n: Clearly, we have to worry only about yi’s in
this component, so let yi 2 ½xm; xn�: It is easily seen that xþ r=2 is increasing
in ½�1; x1� and that x� r=2 is increasing in ½xn�1; 1�: We will show that
xn5xþ r=2 and x5xnþxnþ1

2
cannot hold simultaneously. Indeed if xn5xþ

r=2 and xnþ14x4xn; then xn5xþ r=24xþ jInþ1j=2; which yields that x�
xnþ1 > jInþ1j=2: Since xþ r=2 is increasing, this in turn implies that if x5xnþ1;
then xþ r=25xn: Hence if xn5xþ r=2; then x� yi5x� xnþ1 > jInþ1j=2; so
that

x� yi
x� yi þ r

5
jInþ1j=2

jInþ1j=2 þ jInþ1j
5

1

3
:

The case x� r=25xm is symmetric. Thus (7.35) follows by (7.24).
If, on the other hand, x 2 %OOe � %OO; then x 2 Inj ; where Inj is a connected

component of %OO; such that

rnðuÞ4jInj j4crnðuÞ; u 2 Inj ; ð7:36Þ

and we have

SðuÞ ¼ pjðuÞ; u 2 Inj : ð7:37Þ

This together with (7.36) implies that for A1 :¼ A[ Inj ; which is a proper
interval, we have akðS;A1Þ4cakðS;AÞ: Set

Ine :¼ Inj \ %OOe:

Since x 2 Ine ; dist ðx; I =Inj Þ5r=2; and by (7.36), dist ðx; I =Inj Þ4jInj j4c dist ðx;
I =Inj Þ: Hence

dist ðx; I =A1Þ4jInj j þ dist ðInj ; I =A1Þ

4c dist ðx; I =Inj Þ þ dist ðx; I =A1Þ

4c dist ðx; I =A1Þ; x 2 Ine :

By virtue of (7.23) we thus obtain

jjSðqÞ � DðqÞ
n1
jjIne 4

C
jInj j

qO; q ¼ 0; . . . ; sþ 2; ð7:38Þ

with

O :¼ akðS;AÞ þ akðSÞ
n
n1

jInj j

jInj j þ dist ðInj ; I =AÞ

 !b3

;
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where we used the fact that dist ðInj ; I =A1Þ5dist ðInj ; I =AÞ: It remains to prove
that

jS00ðxÞ � D00
n1
ðxÞj4

CpðxÞ

jInj j
2
O: ð7:39Þ

To this end, let

p1ðxÞ :¼
Y
yi2Inj

jx� yij
jx� yij þ r

; p2ðxÞ :¼
Y
yi =2 Inj

jx� yij
jx� yij þ r

;

so that pðxÞ ¼ p1ðxÞp2ðxÞ: If yi =2 Inj ; then jx� yij > r=2; whence p2ðxÞ53�s:
Therefore we have to prove (7.39) with p1ðxÞ in place of pðxÞ: Now by (7.37)
S � Dn1

is a polynomial in Inj ; and (7.33) and (7.34) imply

S00ðyiÞ � D00
n1
ðyiÞ ¼ 0; i ¼ 1; . . . ; s:

Hence, if yim ; 14m4l4s; are the points of Ys in Inj ; then there is a y 2 Ine ;
such that

jS00ðxÞ � D00
n1
ðxÞj ¼ jSðlþ2ÞðyÞ � Dðlþ2Þ

n1
ðyÞj

Yl
m¼1

jx� yim j

4
CO

jInj j
2

Yl
m¼1

jx� yim j
jInj j

4
Cp1ðxÞ

jInj j
2
O;

where in the first inequality we applied (7.38) and for the second we used the
inequality jx� yim j þ r4cjInj j: This completes the proof of (7.39), and of our
lemma. ]

We are in a position to prove Theorem 5.

8. PROOF OF THEOREM 5

Recall that we may assume that k53: We begin with notation. Given
A � I denote

Ae :¼
[

Ij\A=|

Ij; A2e :¼ ðAeÞe and A3e :¼ ðA2eÞe:

Without loss of generality we may assume that

akðSÞ41; ð8:1Þ
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so that in view of (6.2), in order to prove our assertion, we have to find a
polynomial Pn of degree 4cn; such that

jjS � Pnjj4c ð8:2Þ

and

P 00
n ðxÞdðxÞ50; x 2 I ; ð8:3Þ

where dðxÞ was defined in (4.7). We fix b so big that b3525ðsþ 1Þ (b3 was
defined in (7.29)). This makes C0ðk; s; bÞ; the constant in (7.35), dependent
only on k and s so we denote c2 :¼ C0: Fix an integer c3 such that

c35maxf8k=c1; 12sg; ð8:4Þ

where c1 is the constant from (4.28), and without loss of generality we may
assume that n is divisible by c3; i.e., n ¼ Nc3; where this defines N :

We divide I into N intervals

Eq :¼ ½xqc3
; xðq�1Þc3

� ¼ Iqc3
[ � � � [ Iðq�1Þc3þ1; q ¼ 1; . . . ;N :

We will write j 2 UC (for ‘‘Under Control’’), if there is an x 2 Ij; such that

jS00ðxÞj4
5c2

r2
; ð8:5Þ

and we will say that q 2 G1; if Eq contains at least 2k � 5 intervals Ij with
j 2 UC: We will say that q 2 G; if either q 2 G1; or there is a qn 2 G1; such
that

Ee
qþn \ O=|;

n ¼ 0; 1; . . . ; qn � q; if qn5q;

n ¼ 0;�1; . . . ; qn � q; if qn5q:

(
ð8:6Þ

Note that if q 2 G=G1; then jq� qnj42s; hence (8.1), (8.5) and Lemma 12
imply

jjr2S00jjEq
4c; q 2 G: ð8:7Þ

Now set

E :¼
[
q =2 G

Eq;

and decompose S into a ‘‘small’’ part and a ‘‘big’’ one by setting

s1ðxÞ :¼
S00ðxÞ; if x =2 Ee;

0; if x 2 Ee;

(
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and s2 :¼ S00 � s1; and finally putting

S1ðxÞ :¼ Sð�1Þ þ ðxþ 1ÞS0ð�1Þ þ
Z x

�1

ðx� uÞs1ðuÞ du;

S2ðxÞ :¼
Z x

�1

ðx� uÞs2ðuÞ du:

(Note that s1 and s2 are well defined for x=xj; 04j4n; so that S1 and S2 are
well defined everywhere and possess a second derivative again for x=xj;
04j4n: Thus from now on whenever we write S00l ðxÞ we will mean x=xj;
04j4n:) It follows from (5.6) that S1; S2 2 S1

k;nðY Þ: Evidently,

S001 ðxÞdðxÞ50; x 2 I ; and S002 ðxÞdðxÞ50; x 2 I :

Lemma 10 and (8.7) imply

akðS1Þ4c;

which by virtue of (8.1) yields

akðS2Þ4cþ 15½cþ 2� ¼: c4: ð8:8Þ

The set E is a union of disjoint intervals Fp ¼ ½ap; bp�; between any two of
which there is an interval Eq with q 2 G: We may assume that n > c3c4; and
write p 2 AG (for ‘‘Almost Good’’), if Fp consists of no more than c4

intervals Eq; in particular if it consists of no more than c3c4 intervals Ij: Set

F :¼
[

p =2 AG

Fp;

and let

s4 :¼
S00ðxÞ; if x 2 F e;

0; otherwise;

(

and s3 :¼ S00 � s4: Now put

S3ðxÞ :¼ Sð�1Þ þ ðxþ 1ÞS0ð�1Þ þ
Z x

�1

ðx� uÞs3ðuÞ du;

S4ðxÞ :¼
Z x

�1

ðx� uÞs4ðuÞ du:

Then evidently

S3; S4 2 S1
k;nðYsÞ; ð8:9Þ

S003 ðxÞdðxÞ50; x 2 I ; ð8:10Þ
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and

S004 ðxÞdðxÞ50; x 2 I : ð8:11Þ

For p 2 AG; Lemma 12 and (8.8) imply

jS003 ðxÞj ¼ jS002 ðxÞj4
c
r2
; x 2 Fp:

Hence

jS003 ðxÞj4
c
r2
; x 2 I ; ð8:12Þ

which by virtue of Lemma 10 yields akðS3Þ4c; whence by (8.1),

akðS4Þ4cþ 15½cþ 2� ¼: c5: ð8:13Þ

In view of (8.9), (8.10), combining Theorem 4 with (8.12) and (6.3), we
obtain the existence of a polynomial rn which is coconvex with S; and such
that

jjS3 � rnjj4c: ð8:14Þ

Since

s4ðxÞ ¼ S00ðxÞ; x 2 F e;

then by (8.1) we have for p =2 AG

akðS4; F e
pÞ ¼ akðS; F e

pÞ4akðSÞ41: ð8:15Þ

Also for such p;

s4ðxÞ ¼ S002 ðxÞ; x 2 F 3e
p :

Hence from (8.8)

akðS4; F 3e
p Þ ¼ akðS2; F 3e

p Þ4akðS2Þ4c4: ð8:16Þ

We still have to approximate S4: To this end, applying Lemma 9 we
construct three polynomials Qn and Mn of degree 5cn and we let Dn1

ð�; S4Þ of
degree cn1 be defined by (7.22).

We begin with Qn: For each q for which Eq � F ; let Jq be the union
of all intervals Ij � Eq with j 2 UC: Recall that q =2 G: Therefore by
(8.4), the number of such intervals is at most 2k � 65c3=4; and the total
number of intervals in Eq is c3: Thus Lemma 9 is applicable for each Eq

and if we set

Qn :¼
X
Eq�F

Qnð�;Eq; JqÞ;
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where on the right-hand side are the polynomials guaranteed by Lemma 9
(Qnð�;Eq; JqÞ � 0; if Jq ¼ |), and denote

J :¼
[
Eq�F

Jq;

then we conclude that Qn satisfies

Q00
nðxÞdðxÞ50; x 2 I =F ; ð8:17Þ

Q00
nðxÞdðxÞ5�

pðxÞ
r2

; x 2 F =J ; ð8:18Þ

Q00
nðxÞdðxÞ5

4pðxÞ
r2

; x 2 J : ð8:19Þ

Note that (8.17)–(8.19) follow since for any given x all relevant Q00
nðx;Eq; JqÞ;

except perhaps one, have the same sign. Finally, it follows from (4.30) that

jjQnjj4c: ð8:20Þ

Next we define the polynomial Mn: For each Fp with p =2 AG; let Jp� denote
the union of two intervals, in the left side of F 2e

p =F8p; and let Jpþ denote the

union of two intervals in the right side of F 2e
p =F8p : Similarly, let Fp� and Fpþ

be closed intervals, each consisting of l :¼ c3c4 intervals Ij and such that
Jp� � Fp� � F 2e

p and Jpþ � Fpþ � F 2e
p : Now we set

Mn :¼
X

p =2 AG

ðQnð�; Fpþ ; JpþÞ þ Qnð�; Fp� ; Jp�ÞÞ:

Since l ¼ c3c4 and m ¼ 2; it follows from (8.4) that c1
l
m52c4: Again by

Lemma 9

M 00
n ðxÞdðxÞ5� 2

pðxÞ
r2

; x 2 F ; ð8:21Þ

M 00
n ðxÞdðxÞ5

2c4pðxÞ
r2

; x 2 F 2e=F ; ð8:22Þ

and

M 00
n ðxÞdðxÞ5

pðxÞ
r2

r
dist ðx; F eÞ

� �25ðsþ1Þ

; x 2 I =F 2e; ð8:23Þ
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where in (8.23) we used the inequality

maxfr;dist ðx; F 2eÞg4dist ðx; F eÞ; x 2 I =F 2e:

Finally, it readily follows from (4.30) that

jjMnjj4c: ð8:24Þ

The third auxiliary polynomial, the properties of which we need to recall, is
Dn1

:¼ Dn1
ð�; S4Þ: By (8.13) and the choice of b; Lemma 19 yields

jjS4 � Dn1
jj4c; ð8:25Þ

and Lemma 20 combined with (8.9) and (8.11) implies that for any proper
interval A

jS004 ðxÞ � D00
n1
ðxÞj4

c2pðxÞ
r2

akðS4;AÞ þ
c2c5pðxÞ

r2

n
n1

r

distðx; I =AÞ

� �13ðsþ1Þ

;

x 2 A: ð8:26Þ

Put n1 :¼ c5n and write

Rn :¼ Dn1
þ c2Qn þ c2Mn: ð8:27Þ

By virtue of (8.20), (8.24), and (8.25), we obtain

jjS4 � Rnjj4c:

Combined with (8.14), this proves (8.2) for Pn :¼ Rn þ rn: Thus in order to
conclude the proof of Theorem 5, we should prove that (8.3) holds for our
Pn: To this end, we recall that rn is coconvex with S so that we only have to
deal with Rn: Since (8.26) holds for any proper interval A; we will prescribe
different ones as needed. As long as x 2 F ; it suffices to take A ¼ F e

p ; where p
is such that x 2 Fp: Then the quotient inside the big parentheses in (8.26) is
bounded by 1, for all x 2 F ; and (8.15) and (8.26) yield

jS004 ðxÞ � D00
n1
ðxÞj4

c2pðxÞ
r2

akðS4; F e
pÞ þ

c2c5pðxÞ
r2

n
n1
42

c2pðxÞ
r2

;

x 2 F : ð8:28Þ

If x 2 F 2e=F ; then it suffices to take A ¼ F 3e
p ; where p is such that x 2 F 2e

p ; and
similarly (8.16) and (8.26) imply

jS004 ðxÞ � D00
n1
ðxÞj4

c2pðxÞ
r2

akðS4; F 3e
p Þ þ

c2c5pðxÞ
r2

n
n1
42

c2c4pðxÞ
r2

;

x 2 F 2e: ð8:29Þ
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Finally, if x 2 I =F 2e; then we take A to be the connected component of I =F 8e

that contains x: Then by (8.26),

jS004 ðxÞ � D00
n1
ðxÞj

4
c2pðxÞ
r2

akðS4;AÞ þ
c2c5pðxÞ

r2

n
n1

r

distðx; I =AÞ

� �25ðsþ1Þ

¼
c2pðxÞ
r2

r
distðx; F eÞ

� �25ðsþ1Þ

; x 2 I =F 2e: ð8:30Þ

Since by (8.27)

R00
nðxÞdðxÞ5c2Q00

nðxÞdðxÞ þ c2M 00
n ðxÞdðxÞ þ S004 ðxÞdðxÞ � jS004 ðxÞ � D00

n1
ðxÞj;

x 2 I ;

it follows by (8.19), (8.21), (8.11) and (8.28) that

R00
nðxÞdðxÞ5

c2pðxÞ
r2

ð4 � 2 þ 0 � 2Þ ¼ 0; x 2 J :

If x 2 F =J ; then (8.5) is violated so that

S004 ðxÞdðxÞ >
5c2

r2
5

5c2

r2
pðxÞ:

Hence by virtue of (8.18), (8.21) and (8.28), we get

R00
nðxÞdðxÞ5

c2pðxÞ
r2

ð�1 � 2 þ 5 � 2Þ ¼ 0; x 2 F =J :

Next, if x 2 F 2e=F ; then by (8.17), (8.22), (8.11) and (8.29), we obtain

R00
nðxÞdðxÞ50: ð8:31Þ

Finally, (8.11), (8.17), (8.23) and (8.30) imply (8.31) for x 2 I =F 2e:
Thus, (8.31) holds for all x 2 I ; and so we have constructed a polynomial

Pn; satisfying (8.2) and (8.3), for each n > c; divisible by c3: For all other n’s,
Theorem 5 follows by the inclusion

S1
k;nðYsÞ � S1

k;c3nðYsÞ:

This completes the proof. ]



COCONVEX APPROXIMATION 65
REFERENCES

1. R. A. DeVore, Monotone approximation by polynomials, SIAM J. Math. 8 (1977),

906–921.

2. R. A. DeVore and X. M. Yu, Pointwise estimates for monotone polynomial approxima-

tion, Constr. Approx. 1 (1985), 323–331.

3. Z. Ditzian and V. Totik ‘‘Moduli of Smoothness,’’ Springer Series in Computational

Mathematics, Springer-Verlag, New York, 1987.

4. V. K. Dzyadyk, ‘‘Introduction to the Theory of Uniform Approximation of Functions by

Polynomials,’’ Nauka, Moscow, 1977 (in Russian).

5. G. A. Dzyubenko, J. Gilewicz, and I. A. Shevchuk, Piecewise monotone pointwise

approximation, Constr. Approx. 14 (1998), 311–348.

6. J. Gilewicz and I. A. Shevchuk, Comonotone approximation, Fund. Prikl. Mat. 2 (1996),

319–363 (in Russian).

7. K. Kopotun, D. Leviatan, and I. A. Shevchuk, The degree of coconvex polynomial

approximation, Proc. Amer. Math. Soc. 127 (1999), 409–415.

8. D. Leviatan, Shape-preserving approximation by polynomials, J. Comput. Appl. Math. 121

(2000), 73–94.

9. D. Leviatan and I. A. Shevchuk, Constants in comonotone polynomial approximation}A

survey, in ‘‘New Developments in Approximation Theory,’’ (M. W. M .uuller, M. D.

Buhmann, D. H. Mache, and M. Felten, Eds.), Birkh.aauser, Basel, 1999.

10. D. Leviatan and I. A. Shevchuk, Some positive results and counterexamples in comonotone

approximation II, J. Approx. Theory 100 (1999), 113–143.

11. M. G. Pleshakov and A. V. Shatalina, Piecewise coapproximation and Whitney inequality,

J. Approx. Theory 105 (2000), 189–210.

12. I. A. Shevchuk, ‘‘Polynomial Approximation and Traces of Functions Continuous on a

Segment,’’ Naukova Dumka, Kyiv, 1992 (in Russian).

13. A. S. Shvedov, Orders of coapproximation of functions by algebraic polynomials, Mat.

Zametki 29 (1981), 117–130; English transl. in Math. Notes 29 (1981), 63–70.

14. X. Wu and S. P. Zhou, A counterexample in comonotone approximation in Lp space,

Colloq. Math. 64 (1993), 265–274.


	1. INTRODUCTION
	2. THE MAIN RESULTS
	3. NEGATIVE RESULTS
	4. SOME AUXILIARY LEMMAS
	5. PROOF OF THEOREMS 2 AND 4
	6. SMOOTHING LEMMAS
	7. ZERO-PRESERVING APPROXIMATION
	8. PROOF OF THEOREM 5
	REFERENCES

